def testTemporalPerformance(self, testModel, Xall, Yall, Lall, XtestAll, YtestAll, LtestAll, verbose):
        # Initial window to kick-off free simulation
        x_start = XtestAll[0, :][:, None].T

        # Free simulation
        ygp, varygp = utils.gp_narx(testModel[0].SAMObject.model, x_start, YtestAll.shape[0], LtestAll, self.windowSize)

        return 1000
Пример #2
0
    def testTemporalPerformance(self, testModel, Xall, Yall, Lall, XtestAll,
                                YtestAll, LtestAll, verbose):
        # Initial window to kick-off free simulation
        x_start = XtestAll[0, :][:, None].T

        # Free simulation
        ygp, varygp = utils.gp_narx(testModel[0].SAMObject.model, x_start,
                                    YtestAll.shape[0], LtestAll,
                                    self.windowSize)

        return 1000
Пример #3
0
    def testTemporalPerformance(self, testModel, Xall, Yall, Lall, XtestAll, YtestAll, LtestAll, verbose):
        # Initial window to kick-off free simulation
        x_start = XtestAll[0, :][:, None].T

        # Free simulation
        ygp, varygp = utils.gp_narx(testModel[0].SAMObject.model, x_start, YtestAll.shape[0], LtestAll, self.windowSize)
        pb.figure()
        pb.plot(YtestAll, 'x-')
        pb.plot(ygp, 'ro-')
        pb.legend(('True', 'Pred'))
        pb.title('NARX-with-exogenous')

        err = np.sum((YtestAll - ygp)**2)

        return err
Пример #4
0
    def testTemporalPerformance(self, testModel, Xall, Yall, Lall, XtestAll,
                                YtestAll, LtestAll, verbose):
        # Initial window to kick-off free simulation
        x_start = XtestAll[0, :][:, None].T

        # Free simulation
        ygp, varygp = utils.gp_narx(testModel[0].SAMObject.model, x_start,
                                    YtestAll.shape[0], LtestAll,
                                    self.windowSize)
        pb.figure()
        pb.plot(YtestAll, 'x-')
        pb.plot(ygp, 'ro-')
        pb.legend(('True', 'Pred'))
        pb.title('NARX-with-exogenous')

        err = np.sum((YtestAll - ygp)**2)

        return err
Пример #5
0
Yts = yy[Ntr:, :]
Utr = uu[0:Ntr, :]
Uts = uu[Ntr:, :]

# ----------  Train autoregressive model with additional (exogenous) inputs
m_autoreg = GPy.models.SparseGPRegression(np.hstack((Xtr, Utr)),
                                          Ytr,
                                          num_inducing=num_inducing)
m_autoreg.optimize('bfgs', max_iters=1000, messages=True)
print m_autoreg

# Initial window to kick-off free simulation
x_start = Xts[0, :][:, None].T

# Free simulation
ygp, varygp = autoregressive.gp_narx(m_autoreg, x_start, Yts.shape[0], Uts, ws)
pb.figure()
pb.plot(Yts, 'x-')
pb.plot(ygp, 'ro-')
pb.legend(('True', 'Pred'))
pb.title('NARX-with-exogenous')
#--------------------------------------------

# #----------  Train autoregressive model with no (exogenous) inputs
m_autoreg2 = GPy.models.SparseGPRegression(Xtr, Ytr, num_inducing=num_inducing)
print m_autoreg2

# Initial window to kick-off free simulation
x_start = Xts[0, :][:, None].T

# Free simulation