def caida(): # normal_sigs, normal_nodes = parseToCoo('../loc6-20070501-100.sigs', # undirected=True) # model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 50, 50, True) # import ipdb;ipdb.set_trace() # ROOT = '/home/wangjing/LocalResearch/CyberData/caida-data/passive-2013/' ROOT = '../' normal_sigs, normal_nodes = parseToCoo(ROOT + \ 'equinix-sanjose.dirA.20130117-125912.UTC.anon-10.sigs', undirected=True, first_k=None) botnet_sigs, botnet_nodes = parseToCoo( '../ddostrace.20070804_134936-10.sigs', undirected=True) model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 4, 1000, True) data_set = normal_sigs * 3 + botnet_sigs + normal_sigs * 3 divs1 = monitor_deg_dis(data_set, 'CHJ', [debug_ret['CHJ'][1], 1e-10]) divs3 = monitor_deg_dis(data_set, 'BA', [debug_ret['BA'][1], 1e-10]) divs2 = monitor_deg_dis(data_set, 'ER', [debug_ret['ER'][1], 1e-10]) dump_data = {'d1': divs1, 'd2': divs2, 'd3': divs3} dump(dump_data, './CHJ_overperform_BA.pk') P.subplot(311) P.plot(divs1) P.subplot(312) P.plot(divs2) P.subplot(313) P.plot(divs3) P.show() import ipdb ipdb.set_trace()
def old_caida(): ROOT = '/home/wangjing/LocalResearch/CyberData/caida-data/' T = 4.33 dur_set = np.linspace(0.1, T * 0.9, 20) lk_list = [] for dur in dur_set: dat = load(ROOT + 'passive-2013-sigs-%f/sigs.pk' % (dur)) sigs, nodes = old_pk_to_coo(dat, True) print('len sigs', len(sigs)) # model, para, debug_ret = select_model(len(nodes), sigs, min([40, len(sigs)]), 200, True) model, para, debug_ret = select_model(len(nodes), sigs, len(sigs), 200, True) lk_list.append(debug_ret['ER'][2]) print('log likelihood value', debug_ret['ER'][2]) print('para', para) print('model', model) dump({ 'x': dur_set, 'y': lk_list, 'x_name': 'dur_set', 'y_name': 'lk_list' }, './caida-backbone-er-different-window-size-large-sample.pk') P.plot(dur_set, lk_list) # P.plot(sdd) P.show() import ipdb ipdb.set_trace()
def caida(): # normal_sigs, normal_nodes = parseToCoo('../loc6-20070501-100.sigs', # undirected=True) # model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 50, 50, True) # import ipdb;ipdb.set_trace() # ROOT = '/home/wangjing/LocalResearch/CyberData/caida-data/passive-2013/' ROOT = '../' normal_sigs, normal_nodes = parseToCoo(ROOT + \ 'equinix-sanjose.dirA.20130117-125912.UTC.anon-10.sigs', undirected=True, first_k=None) botnet_sigs, botnet_nodes = parseToCoo('../ddostrace.20070804_134936-10.sigs', undirected=True) model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 4, 1000, True) data_set = normal_sigs * 3 + botnet_sigs + normal_sigs * 3 divs1 = monitor_deg_dis(data_set, 'CHJ', [debug_ret['CHJ'][1], 1e-10]) divs3 = monitor_deg_dis(data_set, 'BA', [debug_ret['BA'][1], 1e-10]) divs2 = monitor_deg_dis(data_set, 'ER', [debug_ret['ER'][1], 1e-10]) dump_data = {'d1': divs1, 'd2': divs2, 'd3': divs3} dump(dump_data, './CHJ_overperform_BA.pk') P.subplot(311) P.plot(divs1) P.subplot(312) P.plot(divs2) P.subplot(313) P.plot(divs3) P.show() import ipdb;ipdb.set_trace()
def validate_select_model_with_ER(N): p_set = np.linspace(0.0001, 0.05, 10) dat = dict() dat['p_set'] = p_set dat['ret'] = [] for p in p_set: normal_sigs = gen_sigs('ER', 100, N, p) normal_nodes = range(N) model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 50, 50, True) dat['ret'].append(debug_ret) dump(dat, 'validate_select_model_with_ER-N-%s.pk' % (N))
def validate_select_model_with_BA(m): N_set = [50, 150, 250, 350] dat = dict() dat['N'] = N_set dat['ret'] = [] for N in N_set: normal_sigs = gen_sigs('BA', 100, N, m) normal_nodes = range(N) model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 50, 50, True) dat['ret'].append(debug_ret) dump(dat, 'validate_select_model_with_BA-m-%i.pk' % (m))
def validate_select_model_with_power_law(p): N_set = [50, 150, 250, 350] dat = dict() dat['N'] = N_set dat['ret'] = [] for N in N_set: normal_sigs = gen_sigs('powerlaw_cluster_graph', 100, N, 2, p) normal_nodes = range(N) model, para, debug_ret = select_model(len(normal_nodes), normal_sigs, 50, 50, True) dat['ret'].append(debug_ret) # import ipdb;ipdb.set_trace() dump(dat, 'validate_select_model_with_power_law-p-%s.pk' % (p))
def old_caida(): ROOT = '/home/wangjing/LocalResearch/CyberData/caida-data/' T = 4.33 dur_set = np.linspace(0.1, T*0.9, 20) lk_list = [] for dur in dur_set: dat = load(ROOT+'passive-2013-sigs-%f/sigs.pk' % (dur)) sigs, nodes = old_pk_to_coo(dat, True) print('len sigs', len(sigs)) # model, para, debug_ret = select_model(len(nodes), sigs, min([40, len(sigs)]), 200, True) model, para, debug_ret = select_model(len(nodes), sigs, len(sigs), 200, True) lk_list.append(debug_ret['ER'][2]) print('log likelihood value', debug_ret['ER'][2]) print('para', para) print('model', model) dump({'x':dur_set, 'y':lk_list, 'x_name':'dur_set', 'y_name':'lk_list'}, './caida-backbone-er-different-window-size-large-sample.pk') P.plot(dur_set, lk_list) # P.plot(sdd) P.show() import ipdb;ipdb.set_trace()