Пример #1
0
def example_birds():
    W = no.stringListToBasicLogic(['( bird <- T )'])

    V = no.stringListToBasicLogic(['bird', 'flies', 'penguin'])
    dParts = no.stringListToBasicLogic(
        ['( bird <- T )', '( flies <- T ) ', '( flies <- T )'])
    default1 = basicLogic.operator_tritonic_defaultRule(
        dParts[0], [dParts[1]], dParts[2])

    dParts2 = no.stringListToBasicLogic(
        ['( cold <- T )', '( flies <- F ) ', '( flies <- F )'])
    default2 = basicLogic.operator_tritonic_defaultRule(
        dParts2[0], [dParts2[1]], dParts2[2])
    D = [default1, default2]

    basePoint = epistemicState.epistemicState('Bird Example')
    basePoint['D'] = D
    basePoint['W'] = W
    basePoint['V'] = V

    ctm_flight = CTM.CTM()
    ctm_flight.si = [basePoint]
    #ctm_flight.appendm(TH)
    ctm_flight.appendm(DEFAULT)

    print(ctm_flight)
    print(ctm_flight.evaluate())
Пример #2
0
def standardSuppression():
    print("===========================================================")
    print("================STANDARD SUPPRESSION========================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    predictions = f(c)
    print('predictions: ', predictions)
    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_Sup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
 def evaluateEpistemicState(self, epi):
     tempCTM = CTM.CTM()
     tempCTM.si = [epi]
     tempCTM.appendm(m_wc())
     tempCTM.appendm(m_semantic())
     p = tempCTM.evaluate()
     return p
Пример #4
0
def example_nixon():
    DEFAULT = cop.m_default()
    W = no.stringListToBasicLogic(['( quaker <- T )', ' ( republican <- T ) '])
    #W = no.stringListToBasicLogic([' bird ', ' penguin '])

    V = no.stringListToBasicLogic(['quaker', 'republican', 'pacifist'])
    #dParts = no.stringListToBasicLogic(['( bird <- T )', '( penguin <- F ) ', '( flies <- T )'])
    dParts = no.stringListToBasicLogic(
        ['( quaker <- T )', '( pacifist <- T ) ', '( pacifist <- T )'])
    default1 = basicLogic.operator_tritonic_defaultRule(
        dParts[0], [dParts[1]], dParts[2])

    dParts2 = no.stringListToBasicLogic(
        ['( republican <- T )', '( pacifist <- F ) ', '( pacifist <- F )'])
    default2 = basicLogic.operator_tritonic_defaultRule(
        dParts2[0], [dParts2[1]], dParts2[2])
    D = [default1, default2]

    basePoint = epistemicState.epistemicState('Bird Example')
    basePoint['D'] = D
    basePoint['W'] = W
    basePoint['V'] = V

    ctm_flight = CTM.CTM()
    ctm_flight.si = [basePoint]
    ctm_flight.appendm(DEFAULT)

    print(ctm_flight)
    print(ctm_flight.evaluate())
Пример #5
0
def example_suppression():
    W = no.stringListToBasicLogic(['( e <- T )'])
    #W = no.stringListToBasicLogic([' bird ', ' penguin '])
    
    V =  no.stringListToBasicLogic(['e', 'l', 'o'])
    #dParts = no.stringListToBasicLogic(['( bird <- T )', '( penguin <- F ) ', '( flies <- T )'])
    dParts1 = no.stringListToBasicLogic(['( e <- T )', '( ab1 <- F ) ', '( l <- T )'])
    default1 = basicLogic.operator_tritonic_defaultRule(dParts1[0],[dParts1[1]],dParts1[2])
    
    dParts2 = no.stringListToBasicLogic(['( o <- T )', '( ab2 <- F ) ', '( l <- T )'])
    default2 = basicLogic.operator_tritonic_defaultRule(dParts2[0],[dParts2[1]],dParts2[2])
    
    dParts3 = no.stringListToBasicLogic(['( o <- F )', '( ab1 <- T ) ', '( ab1 <- T )'])
    default3 = basicLogic.operator_tritonic_defaultRule(dParts3[0],[dParts3[1]],dParts3[2])
    
    dParts4 = no.stringListToBasicLogic(['( e <- F )', '( ab2 <- T ) ', '( ab2 <- T )'])
    default4 = basicLogic.operator_tritonic_defaultRule(dParts4[0],[dParts4[1]],dParts4[2])
    
    D=[default1,default2,default3,default4]
    
    basePoint = epistemicState.epistemicState('Bird Example')
    basePoint['D']=D
    basePoint['W']=W
    basePoint['V']=V
    
    
    ctm_flight = CTM.CTM()
    ctm_flight.si=[basePoint]
    #ctm_flight.appendm(TH)
    ctm_flight.appendm(DEFAULT)
    
    
    print (ctm_flight)
    print (ctm_flight.evaluate())
def abducibleSuppression():
    print("===========================================================")
    print("=================ABDUCIBLE SUPPRESSION=====================")
    print("===========================================================")
    basePoint1 = epistemicState.epistemicState('el')
    delta1 = ["( l | e )"]
    S1 = ["( e <- T )"]
    delta1AsLogic = scpNotationParser.stringListToBasicLogic(delta1)
    S1AsLogic = scpNotationParser.stringListToBasicLogic(S1)
    basePoint1['S'] = S1AsLogic
    basePoint1['Delta'] = delta1AsLogic
    basePoint1['V'] = [e, l]

    #The elo case expressed as the addition of information to the el case
    basePoint2 = copy.deepcopy(basePoint1)
    basePoint2.setName('elo')
    #The possible starting states for the SCP
    extraConditional = ["( l | o )"]
    extraConditionalAsLogic = scpNotationParser.stringListToBasicLogic(
        extraConditional)
    basePoint2['Delta'] = basePoint2['Delta'] + extraConditionalAsLogic
    basePoint2['V'] = basePoint2['V'] + [o]

    #abducibs = [ '( l <- T )', '( l <- F )','( o <- T )', '( o <- F )']
    abducibs = ['( o <- T )', '( o <- F )']
    logAbducibs = scpNotationParser.stringListToBasicLogic(abducibs)
    basePoint1['R'] = {'abducibles': logAbducibs}
    basePoint2['R'] = {'abducibles': logAbducibs}
    #Create the first state point
    statePoints = [basePoint1, basePoint2]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)
    predictions = f(c)
    print('predictions: ', predictions)

    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_noSup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
 def getTh(epi):
     tempCTM = CTM.CTM()
     tempCTM.si = [epi]
     tempCTM.appendm(m_th_simplified(target='W'))
     #guaranteed to be monotonic
     epi = StatePointOperations.flattenStatePoint(tempCTM.evaluate())[0]
     # 2) generateProcesses
     return epi
    def deNoveSearch(self, depth=3, searchType="satisfying"):
        searchTypes = {
            "exhaustive": self.s_exhaustive,
            "satisfying": self.s_satisfying
        }
        firstCTM = CTM.CTM()
        firstCTM.si = self.si

        ctms = firstCTM
        results = self.dns(ctms, depth)
        results = searchTypes[searchType](results)

        return results
def mu_D7_example():
    print("\n>>Example for SCP that turns the cards: D, 7...")
    #create initial base point which has only a single epistemic state in it
    s_i = create_si_contra()

    #The final state dependent external evaluation function
    f = f_turnFunction_prefDoNoTurn

    #the turn responses which would we would like to achieve
    gamma_D7 = {
        'D': 'Turn Card',
        'K': 'Do Not Turn',
        '3': 'Do Not Turn',
        '7': 'Turn Card'
    }

    #This is a test SCP mu=(c,f()) which is known to work
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    #the set of possible observations which might need to be explained to see if we should
    # turn a card
    observations = ['D', 'K', '3', '7']

    #use the turn function to evaluate the ctm and see if the card should be turned
    # we prefer the 'Do Not Turn' response in this case
    predictions = f(c, observations)

    print("First state point is ", s_i)
    print("Example SCP is ", c.__repr__())
    #to print all final states uncomment the next line
    #print("Final State point is : ", c.evaluate())

    #the decisions made by f() for the SCP (c,f())
    print("Responses: ", predictions)
    #print True if mu|=gamma_D3
    print(
        "Lenient: mu|=gamma_D7 :",
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma_D7))
    print(
        "Strict:  mu|=gamma_D7 :",
        StatePointOperations.predictionsModelsGamma_strict(
            predictions, gamma_D7))
Пример #10
0
def abducibleSuppression():
    print("===========================================================")
    print("=================ABDUCIBLE SUPPRESSION=====================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]

    #abducibs = [ '( l <- T )', '( l <- F )','( o <- T )', '( o <- F )']
    abducibs = ['( o <- T )', '( o <- F )']
    logAbducibs = scpNotationParser.stringListToBasicLogic(abducibs)
    basePoint_el['R'] = {'abducibles': logAbducibs}
    basePoint_elo['R'] = {'abducibles': logAbducibs}
    #Create the first state point
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)
    predictions = f(c)
    print('predictions: ', predictions)

    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_noSup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
Пример #11
0
def deletionSuppression():
    print("===========================================================")
    print("================DELETION SUPPRESSION=======================")
    print("===========================================================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]
    basePoint_el['R'] = {'delete': ["o", "e"]}
    basePoint_elo['R'] = {'delete': ["o", "e"]}

    #Create the first state point
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    #The external evaluation function
    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(DELETE)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    predictions = f(c)
    print('predictions: ', predictions)
    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
Пример #12
0
def mu_D_example():
    #create initial base point which has only a single epistemic state in it
    s_i = create_si_noContra()
    #The final state dependent external evaluation function
    f = f_turnFunction_prefDoNoTurn
    #the turn responses which would we would like to achieve
    gamma_D = {
        'D': 'Turn Card',
        'K': 'Do Not Turn',
        '3': 'Do Not Turn',
        '7': 'Do Not Turn'
    }

    #This is a test SCP mu=(c,f()) which is known to work
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    #the set of possible observations which might need to be explained to see if we should
    # turn a card
    observations = ['D', 'K', '3', '7']

    #use the turn function to evaluate the ctm and see if the card should be turned
    # we prefer the 'Do Not Turn' response in this case
    predictions = f(c, observations)

    #print True if mu|=gamma_D3
    print("Responses: ", predictions)
    print(
        "Lenient: mu|=gamma_D :",
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma_D))
    print(
        "Strict:  mu|=gamma_D :",
        StatePointOperations.predictionsModelsGamma_strict(
            predictions, gamma_D))
    print('predictions: ', predictions)
    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))


#print (standardSuppression())
abducibleSuppression()
#print (deletionSuppression())

#test ctm
c = CTM.CTM()
c.setSi(s_i)
c.appendm(ADDAB)
#c.appendm(ABDUCIBLES)
c.appendm(DELETE)
c.appendm(WC)

c.appendm(SEMANTIC)

predictions = f(c)
print('predictions: ', predictions)

print("Lenient Interp")
print(StatePointOperations.predictionsModelsGamma_lenient(predictions, gamma))
print("Strict Interp")
print(StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
Пример #14
0
def needleman_wunsch(seq1, seq2):

    # Store length of two sequences
    n = len(seq1)
    m = len(seq2)

    # Generate matrix of zeros to store scores
    score = zeros(m + 1, n + 1)

    # Calculate score table

    # Fill out first column
    score[0][0] = 0
    for i in range(1, m + 1):

        score[i][0] = score[i - 1][0] + insertionCosts[type(seq2[i - 1])]
        #score[i][0] = insertionCosts

    # Fill out first row
    for j in range(1, n + 1):
        score[0][j] = score[0][j - 1] + insertionCosts[type(seq1[j - 1])]

    # Fill out all other values in the score matrix
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            # Calculate the score by checking the top, left, and diagonal cells
            match = score[i - 1][j - 1] + match_score(seq1[j - 1], seq2[i - 1])
            delete = score[i - 1][j] + insertionCosts[type(seq2[i - 1])]
            insert = score[i][j - 1] + insertionCosts[type(seq1[j - 1])]
            # Record the maximum score from the three possible scores calculated above
            score[i][j] = max(match, delete, insert)

    # Traceback and compute the alignment

    #THIS IS WHERE WE MAKE BIG CHANGES!
    # Create variables to store alignment
    al1 = CTM.CTM()
    al2 = CTM.CTM()
    al1.si == None
    al2.si == None

    # Start from the bottom right cell in matrix
    i = m
    j = n

    # We'll use i and j to keep track of where we are in the matrix, just like above
    while i > 0 and j > 0:  # end touching the top or the left edge
        score_current = score[i][j]
        score_diagonal = score[i - 1][j - 1]
        score_up = score[i][j - 1]
        score_left = score[i - 1][j]

        # Check to figure out which cell the current score was calculated from,
        # then update i and j to correspond to that cell.
        if score_current == score_diagonal + match_score(
                seq1[j - 1], seq2[i - 1]):
            al1.appendm(seq1[j - 1])
            al2.appendm(seq2[i - 1])
            i -= 1
            j -= 1
        elif score_current == score_up + insertionCosts[type(seq1[j - 1])]:
            al1.appendm(seq1[j - 1])
            al2.appendm(NONE)
            j -= 1
        elif score_current == score_left + insertionCosts[type(seq2[i - 1])]:
            al1.appendm(NONE)
            al2.appendm(seq2[i - 1])
            i -= 1

    # Finish tracing up to the top left cell
    while j > 0:
        al1.appendm(seq1[j - 1])
        al2.appendm(NONE)
        j -= 1
    while i > 0:
        al1.appendm(seq2[i - 1])
        al2.appendm(NONE)
        i -= 1

    # Since we traversed the score matrix from the bottom right, our two sequences will be reversed.
    # These two lines reverse the order of the characters in each sequence.
    al1.NMTransformation()
    al2.NMTransformation()
    return (al1, al2, score)
Пример #15
0
import os
os.chdir("../")
from SCPFramework import CTM
from SCPFramework import CognitiveOperation
#the insertion operation. Only used in scoring and alignment
NONE = CognitiveOperation.m_insertionOperation()

# THE SET OF COGNITIVE OPERATIONS APPROPRIATE TO THE SUPPRESSION TASK
ADDAB = CognitiveOperation.m_addAB()
WC = CognitiveOperation.m_wc()
SEMANTIC = CognitiveOperation.m_semantic()
ABDUCIBLES = CognitiveOperation.m_addAbducibles(maxLength=4)
DELETE = CognitiveOperation.m_deleteo()

s_i = ['$s_\text{WST}$']
c = CTM.CTM()
c.setSi(s_i)
c.appendm(ADDAB)
c.appendm(WC)
c.appendm(SEMANTIC)

d = CTM.CTM()
d.setSi(s_i)
d.appendm(ADDAB)
d.appendm(ABDUCIBLES)
d.appendm(WC)
d.appendm(SEMANTIC)

TH = CognitiveOperation.m_dummyOperation('th')

e = CTM.CTM()