Пример #1
0
# TODO: FIND ALTERNATIVE TO THIS PYTHONPATH HACK
import os
import sys

# PYTHONPATH is not found when running mpiexec,
# so inject it so that we can load SROMPy modules...
if 'PYTHONPATH' not in os.environ:
    base_path = os.path.abspath('.')
    sys.path.insert(0, base_path)
    sys.path.insert(0, os.path.join(base_path, 'SROMPy'))

from SROMPy.srom import SROM
from SROMPy.target import BetaRandomVariable

# Random variable to optimize to.
random_variable = BetaRandomVariable(alpha=3., beta=2., shift=1., scale=2.5)

# Run each SROM optimization 10 times to generate performance data.
performance_data = []

# Get MPI information.
comm = MPI.COMM_WORLD

# Load previously saved scalability data if available.
data_filename = os.path.join("data", "weak_scalability_data.txt")

if os.path.isfile(data_filename):

    if comm.rank == 0:
        print 'Loading previously saved data set for modification:'
Пример #2
0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import numpy as np

from model import SpringMass1D
from SROMPy.postprocess import Postprocessor
from SROMPy.srom import SROM, FiniteDifference as FD, SROMSurrogate
from SROMPy.target import SampleRandomVector, BetaRandomVariable

# Random variable for spring stiffness.
stiffness_random_variable = \
    BetaRandomVariable(alpha=3., beta=2., shift=1., scale=2.5)

# Specify spring-mass system:
m = 1.5  # Deterministic mass.
state0 = [0., 0.]  # Initial conditions.
t_grid = np.arange(0., 10., 0.1)  # Time.

# Initialize model,
model = SpringMass1D(m, state0, t_grid)

# ----------Monte Carlo------------------

# Generate stiffness input samples for Monte Carlo.
num_samples = 5000
stiffness_samples = stiffness_random_variable.draw_random_sample(num_samples)