Пример #1
0
def test_values_quadratic_basis():
    """
    tests that the polynomial pieces and the numerical splines evaluate to the same value over all the
    subtriangles.
    """
    X, Y = sy.symbols('X Y')

    triangle = np.array([[0, 0], [1, 0], [0, 1]])

    S = SplineSpace(triangle, 2)

    for basis_num in range(12):
        b_num = S.basis()[basis_num]
        b_sym = polynomial_pieces(triangle,
                                  KNOT_MULTIPLICITIES_QUADRATIC[basis_num])

        subtriangles = ps12_sub_triangles(triangle)

        for k in range(12):
            t = subtriangles[k]
            points = sample_triangle(t, 1)
            num_b_sym = sy.lambdify([X, Y], b_sym[k])

            for p in points:
                np.testing.assert_almost_equal(b_num(p), num_b_sym(p[0], p[1]))
Пример #2
0
def test_integration_second_basis_model_problem_rhs_subdomain_integration():
    k = 2

    triangle = np.array([[0, 0], [1, 0], [0, 1]])
    b_num = SplineSpace(triangle, 2).basis()[2]
    triangle_2 = ps12_sub_triangles(triangle)[k]
    expected_integral = 188.32704191224434

    def f(p):
        """
        The exact source term for the model problem for the biharmonic equation.
        """
        x, y = p[:, 0], p[:, 1]
        return 8 * np.pi**4 * (
            np.sin(2 * np.pi * x) - 8 * np.sin(4 * np.pi * x) +
            25 * np.sin(2 * np.pi * (x - 2 * y)) -
            32 * np.sin(4 * np.pi * (x - y)) - np.sin(2 * np.pi * y) + 8 *
            (np.sin(4 * np.pi * y) + np.sin(2 * np.pi * (-x + y))) +
            25 * np.sin(4 * np.pi * x - 2 * np.pi * y))

    def integrand(p):
        return b_num(p.T) * f(p.T)

    sub_triangles = ps12_sub_triangles(triangle_2)
    computed_integral = 0
    for sub_triangle in sub_triangles:
        computed_integral += quadpy.triangle.integrate(
            integrand, sub_triangle, quadpy.triangle.XiaoGimbutas(12))
    np.testing.assert_almost_equal(computed_integral, expected_integral)
def test_laplacian_quadratic_basis_functions():
    X, Y = sy.symbols('X Y')

    triangle = np.array([[0, 0], [1, 0], [0, 1]])

    S = SplineSpace(triangle, 2)
    points = sample_triangle(triangle, 10)
    for basis_num in range(12):
        b_num = S.basis()[basis_num]
        b_sym = polynomial_pieces(triangle,
                                  KNOT_MULTIPLICITIES_QUADRATIC[basis_num])

        for p in points:
            b = barycentric_coordinates(triangle, p)
            k = determine_sub_triangle(b)[0]
            b_lapl = sy.diff(b_sym[k], X, X) + sy.diff(b_sym[k], Y, Y)
            num_b_sym = sy.lambdify([X, Y], b_lapl)
            np.testing.assert_almost_equal(b_num.lapl(p),
                                           num_b_sym(p[0], p[1]))
Пример #4
0
    def __init__(self, mesh):
        """
        Initializes a Composite C^1 spline space over the given mesh.
        :param mesh:
        """

        self.mesh = mesh
        self.dimension = 3*len(mesh.vertices) + len(mesh.edges)
        self.local_to_global_map, self.dof_to_edge_map, self.dof_to_vertex_map = local_to_global(mesh.vertices, mesh.triangles)
        self.local_spline_spaces = [SplineSpace(mesh.vertices[triangle], degree=2) for triangle in mesh.triangles]
        self.local_spline_bases = [S.hermite_basis() for S in self.local_spline_spaces]
        self._construct_basis_to_triangle_map()
        self._construct_global_to_local_map()
        self._construct_interior_and_boundary_dofs()
        self.basis = [self._construct_global_basis_function(i) for i in range(self.dimension)]
Пример #5
0
def test_integration_second_basis_second_triangle():
    x, y = sp.symbols('X Y')
    k = 2

    triangle = np.array([[0, 0], [1, 0], [0, 1]])
    b_sym = polynomial_pieces(triangle, KNOT_MULTIPLICITIES_QUADRATIC[2])[k]
    b_num = SplineSpace(triangle, 2).basis()[2]
    triangle_2 = ps12_sub_triangles(triangle)[k]
    expected_integral = 0.0117187
    b, w = gaussian_quadrature_data(2)
    b_sym_num = sp.lambdify((x, y), b_sym)

    def f(p):
        return b_num(p.T)

    computed_integral = gaussian_quadrature(triangle_2, b_num, b, w)
    computed_integral = quadpy.triangle.integrate(f, triangle_2,
                                                  quadpy.triangle.SevenPoint())

    np.testing.assert_almost_equal(computed_integral, expected_integral)