###Cross validation score of WS_SVM from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf2, X=AB_train_mms, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of WS_SVM: %s' %scores) print('CV accuracy of WS_SVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores))) ### S_TWSVM: best params of S_TWSVM {'c1': 0.1, 'c2': 10.0, 'c3': 10.0} from S_TWSVM_class import S_TWSVM start_time = time.time() clf3 = S_TWSVM(c1=0.1, c2=10, c3=10) clf3.fit(AB_train_mms, y_train) end_time = time.time() print('Total runtime of S_TWSVM: %s' % ((end_time - start_time))) y_S_TWSVM = clf3.predict(AB_test_mms) print('Accuracy of S_TWSVM %.3f' % (100 * np.mean(y_S_TWSVM == y_test))) ###Cross validation score of S_TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf3, X=AB_train_mms, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of S_TWSVM: %s' %scores) print('CV accuracy of S_TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
###Cross validation score of WS_SVM from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf2, X=AB_train, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of WS_SVM: %s' %scores) print('CV accuracy of WS_SVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores))) ### S_TWSVM best params of S_TWSVM {'c1': 10.0, 'c2': 100.0, 'c3': 1000.0} from S_TWSVM_class import S_TWSVM start_time = time.time() clf3 = S_TWSVM(c1=10, c2=100, c3=1000) clf3.fit(AB_train, y_train) end_time = time.time() print('Total runtime of S_TWSVM: %s' % ((end_time - start_time))) y_S_TWSVM = clf3.predict(AB_test) print('Accuracy of S_TWSVM %.3f' % (100 * np.mean(y_S_TWSVM == y_test))) ###Cross validation score of S_TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf3, X=AB_train, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of S_TWSVM: %s' %scores) print('CV accuracy of S_TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))