Пример #1
0
    fid.write('REF_MOD VALUE %e\n' % ref_mod)
    fid.write('ALPHA DEFAULT\n')
    fid.write('WEIGHT DEFAULT\n')
    fid.write('STORE_ALL_MODELS FALSE\n')
    fid.write('INVMODE SVD\n')
    fid.write('USE_MREF TRUE\n')
    fid.close()

    print ii
    os.chdir(inv_dir)
    os.system('dcinv2d ' + inp_file)

    #%%

    #Load model
    mout.append(DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con'))
    dpre = DC.readUBC_DC2Dpre(inv_dir + dsep + 'dcinv2d.pre')

    dout.append(dpre['DCsurvey'])

    #DCpre.dobs = (DC2D.dobs - DCpre.dobs) / DC2D.std

#%% Add the extra
# Cycle through the lines and invert len(uniqueID)
fig = plt.figure(figsize=(8, 5))
ax1 = plt.subplot(1, 2, 1)
ax2 = plt.subplot(1, 2, 2)


def animate(ii):
Пример #2
0
    fid.write('CHIFACT 1 %f\n' % chifact)
    fid.write('TOPO DEFAULT  %s \n')
    fid.write('INIT_MOD VALUE %e\n' % (str_mod))
    fid.write('REF_MOD VALUE %e\n' % (ref_mod))
    fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 3))
    fid.write('WEIGHT DEFAULT\n')
    fid.write('STORE_ALL_MODELS FALSE\n')
    fid.write('INVMODE CG\n')
    fid.write('USE_MREF TRUE\n')
    fid.close()

    os.chdir(inv_dir)
    os.system('dcinv2d ' + inp_file)

    #Load model
    minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con')

    #%% Compute DOI
    #    DOI = np.abs(invmod[0] - invmod[1]) / np.abs(refmod[0] - refmod[1])
    #    # Normalize between [0 1]
    #    DOI = DOI - np.min(DOI)
    #    DOI = (1.- DOI/np.max(DOI))
    #    DOI[DOI > cutoff] = 1
    #
    #    plt.figure()
    #    plt.xlim([survey2D.srcList[0].loc[0][0]-a,survey2D.srcList[-1].rxList[-1].locs[-1][0][0]+a])
    #    plt.ylim([mesh2d.vectorNy[-1]-dl_len/2,mesh2d.vectorNy[-1]+2*dx])
    #    plt.gca().set_aspect('equal', adjustable='box')
    #
    #    plt.pcolormesh(mesh2d.vectorNx,mesh2d.vectorNy,DOI,alpha=1)
    #    cbar = plt.colorbar(format = '%.2f',fraction=0.02)
Пример #3
0
def animate(ii):

    removeFrame()

    # Grab current line and
    indx = np.where(lineID == ii)[0]

    srcLeft = []
    obs_l = []

    srcRight = []
    obs_r = []

    obs = []

    srcList = []
    # Split the obs file into left and right
    for jj in range(len(indx)):

        # Grab corresponding data
        obs = np.hstack([obs, dobs2D.dobs[dataID == indx[jj]]])
        #std = dobs2D.std[dataID==indx[jj]]

        srcList.append(dobs2D.srcList[indx[jj]])

        Tx = dobs2D.srcList[indx[jj]].loc
        Rx = dobs2D.srcList[indx[jj]].rxList[0].locs

        # Create mid-point location
        Cmid = (Tx[0][0] + Tx[1][0]) / 2
        Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2

        ileft = Pmid < Cmid
        iright = Pmid >= Cmid

        temp = np.zeros(len(ileft))
        temp[ileft] = 1
        obs_l = np.hstack([obs_l, temp])

        temp = np.zeros(len(iright))
        temp[iright] = 1
        obs_r = np.hstack([obs_r, temp])

        if np.any(ileft):
            rx = DC.RxDipole(Rx[0][ileft, :], Rx[1][ileft, :])
            srcLeft.append(DC.SrcDipole([rx], Tx[0], Tx[1]))

            #std_l = np.hstack([std_l,std[ileft]])

        if np.any(iright):
            rx = DC.RxDipole(Rx[0][iright, :], Rx[1][iright, :])
            srcRight.append(DC.SrcDipole([rx], Tx[0], Tx[1]))

            #obs_r = np.hstack([obs_r,iright])
            #std_r = np.hstack([std_r,std[iright]])

    DC2D_full = DC.SurveyDC(srcList)
    DC2D_full.dobs = np.asarray(obs)
    DC2D_full.std = DC2D_full.dobs * 0.
    DC2D_full.std[obs_l ==
                  1] = np.abs(DC2D_full.dobs[obs_l == 1]) * 0.02 + 2e-5
    DC2D_full.std[obs_r ==
                  1] = np.abs(DC2D_full.dobs[obs_r == 1]) * 0.06 + 4e-5

    DC2D_l = DC.SurveyDC(srcLeft)
    DC2D_l.dobs = np.asarray(obs[obs_l == 1])
    DC2D_l.std = np.abs(np.asarray(DC2D_l.dobs)) * 0.05 + 2e-5

    DC2D_r = DC.SurveyDC(srcRight)
    DC2D_r.dobs = np.asarray(obs[obs_r == 1])
    DC2D_r.std = np.abs(np.asarray(DC2D_r.dobs)) * 0.05 + 2e-5

    #DC.plot_pseudoSection(dobs2D,lineID, np.r_[0,1],'pdp')

    id_lbe = int(DCsurvey.srcList[indx[jj]].loc[0][1])

    mesh3d = Mesh.TensorMesh([hx, 1, hz],
                             x0=(-np.sum(padx) + np.min(srcMat[0][:, 0]),
                                 id_lbe, np.max(srcMat[0][0, 2]) - np.sum(hz)))
    Mesh.TensorMesh.writeUBC(mesh3d,
                             home_dir + dsep + 'Mesh' + str(id_lbe) + '.msh')
    global ax1, ax2, ax3, ax5, ax6, fig

    ax2 = plt.subplot(3, 2, 2)
    ph = DC.plot_pseudoSection(DC2D_r, ax2, stype='pdp', colorbar=False)
    ax2.set_title('Observed P-DP', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax2.set_xticklabels([])
    ax2.set_yticklabels([])

    ax1 = plt.subplot(3, 2, 1)
    DC.plot_pseudoSection(DC2D_l,
                          ax1,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax1.set_title('Observed DP-P', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax1.set_xticklabels([])
    z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5)
    z_label = np.linspace(20, 1, 5)
    ax1.set_yticks(map(int, z))
    ax1.set_yticklabels(map(str, map(int, z_label)), size=8)
    ax1.set_ylabel('n-spacing', fontsize=8)

    #%% Add labels
    bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1)
    ax2.text(0.00,
             1,
             'A',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1)
    ax2.text(0.1,
             1,
             'M',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1)
    ax2.text(0.2,
             1,
             'N',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1)
    ax1.text(0.00,
             1,
             'N',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1)
    ax1.text(0.1,
             1,
             'M',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1)
    ax1.text(0.2,
             1,
             'A',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    # Run both left and right survey seperately

    survey = DC2D_full

    # Export data file
    DC.writeUBC_DCobs(inv_dir + dsep + obsfile2d, survey, '2D', 'SIMPLE')

    # Write input file
    fid = open(inv_dir + dsep + inp_file, 'w')
    fid.write('OBS LOC_X %s \n' % obsfile2d)
    fid.write('MESH FILE %s \n' % mshfile2d)
    fid.write('CHIFACT 1 \n')
    fid.write('TOPO DEFAULT \n')
    fid.write('INIT_MOD VALUE %e\n' % ini_mod)
    fid.write('REF_MOD VALUE %e\n' % ref_mod)
    fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 1))
    fid.write('WEIGHT DEFAULT\n')
    fid.write('STORE_ALL_MODELS FALSE\n')
    fid.write('INVMODE SVD\n')
    #fid.write('CG_PARAM 200 1e-4\n')
    fid.write('USE_MREF FALSE\n')
    #fid.write('BOUNDS VALUE 1e-4 1e+2\n')
    fid.close()

    os.chdir(inv_dir)
    os.system('dcinv2d ' + inp_file)

    #%% Load model and predicted data
    minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con')
    minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx))

    Mesh.TensorMesh.writeModelUBC(
        mesh3d, home_dir + dsep + 'Model' + str(id_lbe) + '.con', minv.T)

    dpre = DC.readUBC_DC2Dpre(inv_dir + dsep + 'dcinv2d.pre')
    DCpre = dpre['DCsurvey']

    DCtemp = DC2D_l
    DCtemp.dobs = DCpre.dobs[obs_l == 1]

    ax5 = plt.subplot(3, 2, 3)
    DC.plot_pseudoSection(DCtemp,
                          ax5,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax5.set_title('Predicted', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax5.set_xticklabels([])
    z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5)
    z_label = np.linspace(20, 1, 5)
    ax5.set_yticks(map(int, z))
    ax5.set_yticklabels(map(str, map(int, z_label)), size=8)
    ax5.set_ylabel('n-spacing', fontsize=8)

    DCtemp = DC2D_r
    DCtemp.dobs = DCpre.dobs[obs_r == 1]

    ax6 = plt.subplot(3, 2, 4)
    DC.plot_pseudoSection(DCtemp,
                          ax6,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax6.set_title('Predicted', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax6.set_xticklabels([])
    ax6.set_yticklabels([])

    pos = ax6.get_position()
    cbarax = fig.add_axes([
        pos.x0 + 0.325, pos.y0 + 0.2, pos.width * 0.1, pos.height * 0.5
    ])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph[0],
                      cax=cbarax,
                      orientation="vertical",
                      ax=ax6,
                      ticks=np.linspace(ph[0].get_clim()[0],
                                        ph[0].get_clim()[1], 4),
                      format="$10^{%.1f}$")
    cb.set_label("App. Cond. (S/m)", size=8)

    ax3 = plt.subplot(3, 1, 3)
    ax3.set_title('2-D Model (S/m)', fontsize=10)
    ax3.set_xticks(map(int, x))
    ax3.set_xticklabels(map(str, map(int, x)))
    ax3.set_xlabel('Easting (m)', fontsize=8)
    ax3.set_yticks(map(int, z))
    ax3.set_yticklabels(map(str, map(int, z)), rotation='vertical')
    ax3.set_ylabel('Depth (m)', fontsize=8)

    plt.xlim([xmin, xmax])
    plt.ylim([zmin / 2, zmax])
    plt.gca().set_aspect('equal', adjustable='box')

    ph2 = plt.pcolormesh(mesh2d.vectorNx,
                         mesh2d.vectorNy,
                         np.log10(minv),
                         vmin=vmin,
                         vmax=vmax)
    plt.gca().tick_params(axis='both', which='major', labelsize=8)

    plt.draw()

    for ss in range(survey.nSrc):
        Tx = survey.srcList[ss].loc[0]
        plt.scatter(Tx[0], mesh2d.vectorNy[-1] + 10, s=10)

    pos = ax3.get_position()
    ax3.set_position([pos.x0 + 0.025, pos.y0, pos.width, pos.height])
    pos = ax3.get_position()
    cbarax = fig.add_axes([
        pos.x0 + 0.65, pos.y0 + 0.01, pos.width * 0.05, pos.height * 0.75
    ])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph2,
                      cax=cbarax,
                      orientation="vertical",
                      ax=ax4,
                      ticks=np.linspace(vmin, vmax, 4),
                      format="$10^{%.1f}$")
    cb.set_label("Conductivity (S/m)", size=8)

    pos = ax1.get_position()
    ax1.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height])

    pos = ax5.get_position()
    ax5.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height])

    pos = ax2.get_position()
    ax2.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height])

    pos = ax6.get_position()
    ax6.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height])
    #%% Add the extra

    bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2)
    ax2.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2),
             'N: ' + str(id_lbe),
             transform=fig.transFigure,
             ha="left",
             va="center",
             size=8,
             bbox=bbox_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=2)
    ax2.text(0.01,
             0.9,
             'Line ID#',
             transform=fig.transFigure,
             ha="left",
             va="center",
             size=8,
             bbox=mrk_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2)

    for jj in range(len(uniqueID)):
        ax2.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2),
                 ".",
                 transform=fig.transFigure,
                 ha="right",
                 va="center",
                 size=8,
                 bbox=mrk_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2)

    ax2.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2),
             ".",
             transform=fig.transFigure,
             ha="right",
             va="center",
             size=8,
             bbox=mrk_props)
Пример #4
0
dsep = '\\'

# Forward solver
slvr = 'BiCGStab' #'LU'

# Preconditioner
pcdr = 'Jacobi' #'Gauss-Seidel'#

# Number of padding cells to remove from plotting
padc = 15

# Load UBC mesh 2D
mesh = DC.readUBC_DC2DMesh(home_dir + dsep + msh_file)

# Load model
model = DC.readUBC_DC2DModel(home_dir + dsep + mod_file)


# load obs file
dcfile = DC.readUBC_DC3Dobs(home_dir + dsep + obs_file)
survey = dcfile['DCsurvey']
survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc), 'Xloc')
#%% Create system
#Set boundary conditions
mesh.setCellGradBC('neumann')

Div = mesh.faceDiv
Grad = mesh.cellGrad
Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model)))

A = Div*Msig*Grad