def fit_colecole_with_se(self, eta_cc=0.8, tau_cc=0.003, c_cc=0.6): def ColeColeSeigel(f, sigmaInf, eta, tau, c): w = 2 * np.pi * f return sigmaInf * (1 - eta / (1 + (1j * w * tau)**c)) # Step1: Fit Cole-Cole with Stretched Exponential function time = np.logspace(-6, np.log10(0.01), 41) wt, tbase, omega_int = DigFilter.setFrequency(time) frequency = omega_int / (2 * np.pi) # Cole-Cole parameters siginf = 1. self.eta_cc = eta_cc self.tau_cc = tau_cc self.c_cc = c_cc sigma = ColeColeSeigel(frequency, siginf, eta_cc, tau_cc, c_cc) sigTCole = DigFilter.transFiltImpulse(sigma, wt, tbase, omega_int, time, tol=1e-12) wires = Maps.Wires(('eta', 1), ('tau', 1), ('c', 1)) taumap = Maps.ExpMap(nP=1) * wires.tau survey = SESurvey() dtrue = -sigTCole survey.dobs = dtrue m1D = Mesh.TensorMesh([np.ones(3)]) prob = SEInvImpulseProblem(m1D, etaMap=wires.eta, tauMap=taumap, cMap=wires.c) update_sens = Directives.UpdateSensitivityWeights() prob.time = time prob.pair(survey) m0 = np.r_[eta_cc, np.log(tau_cc), c_cc] perc = 0.05 dmisfitpeta = DataMisfit.l2_DataMisfit(survey) dmisfitpeta.W = 1 / (abs(survey.dobs) * perc) reg = regularization.Simple(m1D) opt = Optimization.ProjectedGNCG(maxIter=10) invProb = InvProblem.BaseInvProblem(dmisfitpeta, reg, opt) # Create an inversion object target = Directives.TargetMisfit() invProb.beta = 0. inv = Inversion.BaseInversion(invProb, directiveList=[target]) reg.mref = 0. * m0 prob.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') opt.tolX = 1e-20 opt.tolF = 1e-20 opt.tolG = 1e-20 opt.eps = 1e-20 mopt = inv.run(m0) return mopt
def resolve_1Dinversions(mesh, dobs, src_height, freqs, m0, mref, mapping, std=0.08, floor=1e-14, rxOffset=7.86): """ Perform a single 1D inversion for a RESOLVE sounding for Horizontal Coplanar Coil data (both real and imaginary). :param discretize.CylMesh mesh: mesh used for the forward simulation :param numpy.array dobs: observed data :param float src_height: height of the source above the ground :param numpy.array freqs: frequencies :param numpy.array m0: starting model :param numpy.array mref: reference model :param Maps.IdentityMap mapping: mapping that maps the model to electrical conductivity :param float std: percent error used to construct the data misfit term :param float floor: noise floor used to construct the data misfit term :param float rxOffset: offset between source and receiver. """ # ------------------- Forward Simulation ------------------- # # set up the receivers bzr = EM.FDEM.Rx.Point_bSecondary(np.array([[rxOffset, 0., src_height]]), orientation='z', component='real') bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., src_height]]), orientation='z', component='imag') # source location srcLoc = np.array([0., 0., src_height]) srcList = [ EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z') for freq in freqs ] # construct a forward simulation survey = EM.FDEM.Survey(srcList) prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=PardisoSolver) prb.pair(survey) # ------------------- Inversion ------------------- # # data misfit term survey.dobs = dobs dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = abs(dobs) * std + floor dmisfit.W = 1. / uncert # regularization regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) reg.mref = mref # optimization opt = Optimization.InexactGaussNewton(maxIter=10) # statement of the inverse problem invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Inversion directives and parameters target = Directives.TargetMisfit() inv = Inversion.BaseInversion(invProb, directiveList=[target]) invProb.beta = 2. # Fix beta in the nonlinear iterations reg.alpha_s = 1e-3 reg.alpha_x = 1. prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') # run the inversion mopt = inv.run(m0) return mopt, invProb.dpred, survey.dobs
def run(plotIt=True): cs, ncx, ncz, npad = 5., 25, 15, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = Mesh.CylMesh([hx, 1, hz], '00C') layerz = -100. active = mesh.vectorCCz < 0. layer = (mesh.vectorCCz < 0.) & (mesh.vectorCCz >= layerz) actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap sig_half = 2e-2 sig_air = 1e-8 sig_layer = 1e-2 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) if plotIt: fig, ax = plt.subplots(1, 1, figsize=(3, 6)) plt.semilogx(sigma[active], mesh.vectorCCz[active]) ax.set_ylim(-500, 0) ax.set_xlim(1e-3, 1e-1) ax.set_xlabel('Conductivity (S/m)', fontsize=14) ax.set_ylabel('Depth (m)', fontsize=14) ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) rxOffset = 10. bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., 1e-3]]), orientation='z', component='imag') freqs = np.logspace(1, 3, 10) srcLoc = np.array([0., 0., 10.]) srcList = [ EM.FDEM.Src.MagDipole([bzi], freq, srcLoc, orientation='Z') for freq in freqs ] survey = EM.FDEM.Survey(srcList) prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver) prb.pair(survey) std = 0.05 survey.makeSyntheticData(mtrue, std) survey.std = std survey.eps = np.linalg.norm(survey.dtrue) * 1e-5 if plotIt: fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.semilogx(freqs, survey.dtrue[:freqs.size], 'b.-') ax.semilogx(freqs, survey.dobs[:freqs.size], 'r.-') ax.legend(('Noisefree', '$d^{obs}$'), fontsize=16) ax.set_xlabel('Time (s)', fontsize=14) ax.set_ylabel('$B_z$ (T)', fontsize=16) ax.set_xlabel('Time (s)', fontsize=14) ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) dmisfit = DataMisfit.l2_DataMisfit(survey) regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Tikhonov(regMesh) opt = Optimization.InexactGaussNewton(maxIter=6) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest]) m0 = np.log(np.ones(mtrue.size) * sig_half) reg.alpha_s = 1e-3 reg.alpha_x = 1. prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 1, figsize=(3, 6)) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax.set_ylim(-500, 0) ax.set_xlim(1e-3, 1e-1) ax.set_xlabel('Conductivity (S/m)', fontsize=14) ax.set_ylabel('Depth (m)', fontsize=14) ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) plt.legend(['$\sigma_{true}$', '$\sigma_{pred}$'], loc='best')
regmap = Maps.IdentityMap(nP=m0.size) survey.std = perc survey.eps = floor survey.dobs = dobs dmisfit = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Simple(mesh, mapping=regmap, indActive=~airind) opt = Optimization.InexactGaussNewton(maxIter=20) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) save = Directives.SaveOutputEveryIteration() save_model = Directives.SaveModelEveryIteration() target = Directives.TargetMisfit() inv = Inversion.BaseInversion( invProb, directiveList=[beta, betaest, save, save_model, target]) reg.alpha_s = 1e-2 reg.alpha_x = 1. reg.alpha_y = 1. reg.alpha_z = 1. problem.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 mopt = inv.run(m0) sigopt = mapping * mopt np.save("sigest", sigopt) np.save("dpred", invProb.dpred)
def run(plotIt=True, survey_type="dipole-dipole", p=0., qx=2., qz=2.): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0., 200. ymin, ymax = 0., 0. zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = DC.Utils.gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey.getABMN_locations() survey = IO.from_ambn_locations_to_survey(survey.a_locations, survey.b_locations, survey.m_locations, survey.n_locations, survey_type, data_dc_type='volt') # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() topo, mesh1D = DC.Utils.genTopography(mesh, -10, 0, its=100) actind = Utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo]) survey.drapeTopo(mesh, actind, option="top") # Build a conductivity model blk_inds_c = Utils.ModelBuilder.getIndicesSphere(np.r_[60., -25.], 12.5, mesh.gridCC) blk_inds_r = Utils.ModelBuilder.getIndicesSphere(np.r_[140., -25.], 12.5, mesh.gridCC) layer_inds = mesh.gridCC[:, 1] > -5. sigma = np.ones(mesh.nC) * 1. / 100. sigma[blk_inds_c] = 1. / 10. sigma[blk_inds_r] = 1. / 1000. sigma[~actind] = 1. / 1e8 rho = 1. / sigma # Show the true conductivity model if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage(temp, grid=True, ax=ax, gridOpts={'alpha': 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'k.') ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect('equal') plt.show() # Use Exponential Map: m = log(rho) actmap = Maps.InjectActiveCells(mesh, indActive=actind, valInactive=np.log(1e8)) mapping = Maps.ExpMap(mesh) * actmap # Generate mtrue mtrue = np.log(rho[actind]) # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Problem2D_N(mesh, rhoMap=mapping, storeJ=True, Solver=Solver, verbose=True) # Pair problem with survey try: prb.pair(survey) except: survey.unpair() prb.pair(survey) # Make synthetic DC data with 5% Gaussian noise dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True) IO.data_dc = dtrue # Show apparent resisitivty pseudo-section if plotIt: IO.plotPseudoSection(data=survey.dobs / IO.G, data_type='apparent_resistivity') # Show apparent resisitivty histogram if plotIt: fig = plt.figure() out = hist(survey.dobs / IO.G, bins=20) plt.xlabel("Apparent Resisitivty ($\Omega$m)") plt.show() # Set initial model based upon histogram m0 = np.ones(actmap.nP) * np.log(100.) # Set uncertainty # floor eps = 10**(-3.2) # percentage std = 0.05 dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = abs(survey.dobs) * std + eps dmisfit.W = 1. / uncert # Map for a regularization regmap = Maps.IdentityMap(nP=int(actind.sum())) # Related to inversion reg = Regularization.Sparse(mesh, indActive=actind, mapping=regmap, gradientType='components') # gradientType = 'components' reg.norms = np.c_[p, qx, qz, 0.] IRLS = Directives.Update_IRLS(maxIRLSiter=20, minGNiter=1, betaSearch=False, fix_Jmatrix=True) opt = Optimization.InexactGaussNewton(maxIter=40) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = Directives.TargetMisfit() update_Jacobi = Directives.UpdatePreconditioner() inv = Inversion.BaseInversion(invProb, directiveList=[betaest, IRLS]) prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') # Run inversion mopt = inv.run(m0) rho_est = mapping * mopt rho_est_l2 = mapping * invProb.l2model rho_est[~actind] = np.nan rho_est_l2[~actind] = np.nan rho_true = rho.copy() rho_true[~actind] = np.nan # show recovered conductivity if plotIt: vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(3, 1, figsize=(20, 9)) out1 = mesh.plotImage(rho_true, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[0]) out2 = mesh.plotImage(rho_est_l2, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[1]) out3 = mesh.plotImage(rho_est, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[2]) out = [out1, out2, out3] titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)] for i in range(3): ax[i].plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'kv') ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect('equal') ax[i].set_title(titles[i]) plt.tight_layout() plt.show()
def run(plotIt=True, saveFig=False): # Set up cylindrically symmeric mesh cs, ncx, ncz, npad = 10., 15, 25, 13 # padded cyl mesh hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = Mesh.CylMesh([hx, 1, hz], '00C') # Conductivity model layerz = np.r_[-200., -100.] layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1]) active = mesh.vectorCCz < 0. sig_half = 1e-2 # Half-space conductivity sig_air = 1e-8 # Air conductivity sig_layer = 5e-2 # Layer conductivity sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer # Mapping actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap mtrue = np.log(sigma[active]) # ----- FDEM problem & survey ----- # rxlocs = Utils.ndgrid([np.r_[50.], np.r_[0], np.r_[0.]]) bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real') bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag') freqs = np.logspace(2, 3, 5) srcLoc = np.array([0., 0., 0.]) print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half), 'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half)) print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(), 'max z ', mesh.vectorCCz.max()) srcList = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z') for freq in freqs ] surveyFD = FDEM.Survey(srcList) prbFD = FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver) prbFD.pair(surveyFD) std = 0.03 surveyFD.makeSyntheticData(mtrue, std) surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-5 # FDEM inversion np.random.seed(1) dmisfit = DataMisfit.l2_DataMisfit(surveyFD) regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) opt = Optimization.InexactGaussNewton(maxIterCG=10) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Inversion Directives beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.) target = Directives.TargetMisfit() directiveList = [beta, betaest, target] inv = Inversion.BaseInversion(invProb, directiveList=directiveList) m0 = np.log(np.ones(mtrue.size) * sig_half) reg.alpha_s = 5e-1 reg.alpha_x = 1. prbFD.counter = opt.counter = Utils.Counter() opt.remember('xc') moptFD = inv.run(m0) # TDEM problem times = np.logspace(-4, np.log10(2e-3), 10) print('min diffusion distance ', 1.28 * np.sqrt(times.min() / (sig_half * mu_0)), 'max diffusion distance ', 1.28 * np.sqrt(times.max() / (sig_half * mu_0))) rx = TDEM.Rx.Point_b(rxlocs, times, 'z') src = TDEM.Src.MagDipole( [rx], waveform=TDEM.Src.StepOffWaveform(), loc=srcLoc # same src location as FDEM problem ) surveyTD = TDEM.Survey([src]) prbTD = TDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver) prbTD.timeSteps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)] prbTD.pair(surveyTD) std = 0.03 surveyTD.makeSyntheticData(mtrue, std) surveyTD.std = std surveyTD.eps = np.linalg.norm(surveyTD.dtrue) * 1e-5 # TDEM inversion dmisfit = DataMisfit.l2_DataMisfit(surveyTD) regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) opt = Optimization.InexactGaussNewton(maxIterCG=10) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # directives beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.) target = Directives.TargetMisfit() directiveList = [beta, betaest, target] inv = Inversion.BaseInversion(invProb, directiveList=directiveList) m0 = np.log(np.ones(mtrue.size) * sig_half) reg.alpha_s = 5e-1 reg.alpha_x = 1. prbTD.counter = opt.counter = Utils.Counter() opt.remember('xc') moptTD = inv.run(m0) # Plot the results if plotIt: plt.figure(figsize=(10, 8)) ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2) ax1 = plt.subplot2grid((2, 2), (0, 1)) ax2 = plt.subplot2grid((2, 2), (1, 1)) fs = 13 # fontsize matplotlib.rcParams['font.size'] = fs # Plot the model ax0.semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2, label="True") ax0.semilogx(np.exp(moptFD), mesh.vectorCCz[active], 'bo', ms=6, markeredgecolor='k', markeredgewidth=0.5, label="FDEM") ax0.semilogx(np.exp(moptTD), mesh.vectorCCz[active], 'r*', ms=10, markeredgecolor='k', markeredgewidth=0.5, label="TDEM") ax0.set_ylim(-700, 0) ax0.set_xlim(5e-3, 1e-1) ax0.set_xlabel('Conductivity (S/m)', fontsize=fs) ax0.set_ylabel('Depth (m)', fontsize=fs) ax0.grid(which='both', color='k', alpha=0.5, linestyle='-', linewidth=0.2) ax0.legend(fontsize=fs, loc=4) # plot the data misfits - negative b/c we choose positive to be in the # direction of primary ax1.plot(freqs, -surveyFD.dobs[::2], 'k-', lw=2, label="Obs (real)") ax1.plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2, label="Obs (imag)") dpredFD = surveyFD.dpred(moptTD) ax1.loglog(freqs, -dpredFD[::2], 'bo', ms=6, markeredgecolor='k', markeredgewidth=0.5, label="Pred (real)") ax1.loglog(freqs, -dpredFD[1::2], 'b+', ms=10, markeredgewidth=2., label="Pred (imag)") ax2.loglog(times, surveyTD.dobs, 'k-', lw=2, label='Obs') ax2.loglog(times, surveyTD.dpred(moptTD), 'r*', ms=10, markeredgecolor='k', markeredgewidth=0.5, label='Pred') ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4) # Labels, gridlines, etc ax2.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2) ax1.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2) ax1.set_xlabel('Frequency (Hz)', fontsize=fs) ax1.set_ylabel('Vertical magnetic field (-T)', fontsize=fs) ax2.set_xlabel('Time (s)', fontsize=fs) ax2.set_ylabel('Vertical magnetic field (T)', fontsize=fs) ax2.legend(fontsize=fs, loc=3) ax1.legend(fontsize=fs, loc=3) ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1) ax0.set_title("(a) Recovered Models", fontsize=fs) ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs) ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs) plt.tight_layout(pad=1.5) if saveFig is True: plt.savefig('example1.png', dpi=600)
#sigma0 = np.ones(mesh_2d.nC) * 1e-3 #sigma0[blk1] = 1. #m0 = np.log(sigma0[actind]) from SimPEG import (EM, Mesh, Maps, DataMisfit, Regularization, Optimization, InvProblem, Inversion, Directives, Utils) survey.dobs = dobs_dbdtz survey.std = 0.05 survey.eps = 1e-14 dmisfit = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov( mesh_2d, alpha_s=1./mesh_2d.hx.min()**2, alpha_x=1., alpha_y=1., indActive=actind ) opt = Optimization.InexactGaussNewton(maxIter=20, LSshorten=0.5) opt.remember('xc') invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=3) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1.) target=Directives.TargetMisfit() save_model = Directives.SaveModelEveryIteration() save = Directives.SaveOutputEveryIteration() inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest, target, save_model, save]) prb.counter = opt.counter = Utils.Counter() reg.mref = mref mopt = inv.run(m0) np.save('mopt', mopt) np.save('dpred', invProb.dpred)
def run(plotIt=True, survey_type="dipole-dipole", rho_background=1e3, rho_block=1e2, block_x0=100, block_dx=10, block_y0=-10, block_dy=5): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0., 200. ymin, ymax = 0., 0. zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = DC.Utils.gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey.getABMN_locations() survey = IO.from_ambn_locations_to_survey(survey.a_locations, survey.b_locations, survey.m_locations, survey.n_locations, survey_type, data_dc_type='volt') # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() # Flat topography actind = Utils.surface2ind_topo(mesh, np.c_[mesh.vectorCCx, mesh.vectorCCx * 0.]) survey.drapeTopo(mesh, actind, option="top") # Use Exponential Map: m = log(rho) actmap = Maps.InjectActiveCells(mesh, indActive=actind, valInactive=np.log(1e8)) parametric_block = Maps.ParametricBlock(mesh, slopeFact=1e2) mapping = Maps.ExpMap(mesh) * parametric_block # Set true model # val_background,val_block, block_x0, block_dx, block_y0, block_dy mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10] # Set initial model m0 = np.r_[np.log(rho_background), np.log(rho_block), block_x0, block_dx, block_y0, block_dy] rho = mapping * mtrue rho0 = mapping * m0 # Show the true conductivity model fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage(temp, grid=False, ax=ax, gridOpts={'alpha': 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'k.') ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect('equal') ax.set_title("True resistivity model") plt.show() # Show the true conductivity model fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho0.copy() temp[~actind] = np.nan out = mesh.plotImage(temp, grid=False, ax=ax, gridOpts={'alpha': 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'k.') ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect('equal') ax.set_title("Initial resistivity model") plt.show() # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Problem2D_N(mesh, rhoMap=mapping, storeJ=True, Solver=Solver) # Pair problem with survey try: prb.pair(survey) except: survey.unpair() prb.pair(survey) # Make synthetic DC data with 5% Gaussian noise dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True) # Show apparent resisitivty pseudo-section IO.plotPseudoSection(data=survey.dobs / IO.G, data_type='apparent_resistivity') # Show apparent resisitivty histogram fig = plt.figure() out = hist(survey.dobs / IO.G, bins=20) plt.show() # Set uncertainty # floor eps = 10**(-3.2) # percentage std = 0.05 dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = abs(survey.dobs) * std + eps dmisfit.W = 1. / uncert # Map for a regularization mesh_1d = Mesh.TensorMesh([parametric_block.nP]) # Related to inversion reg = Regularization.Simple(mesh_1d, alpha_x=0.) opt = Optimization.InexactGaussNewton(maxIter=10) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = Directives.TargetMisfit() updateSensW = Directives.UpdateSensitivityWeights() update_Jacobi = Directives.UpdatePreconditioner() invProb.beta = 0. inv = Inversion.BaseInversion(invProb, directiveList=[target]) prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') # Run inversion mopt = inv.run(m0) # Convert obtained inversion model to resistivity # rho = M(m), where M(.) is a mapping rho_est = mapping * mopt rho_true = rho.copy() # show recovered conductivity vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(2, 1, figsize=(20, 6)) out1 = mesh.plotImage(rho_true, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[0]) out2 = mesh.plotImage(rho_est, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[1]) out = [out1, out2] for i in range(2): ax[i].plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'kv') ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect('equal') ax[0].set_title("True resistivity model") ax[1].set_title("Recovered resistivity model") plt.tight_layout() plt.show()
def run(plotIt=True): """ 1D FDEM Mu Inversion ==================== 1D inversion of Magnetic Susceptibility from FDEM data assuming a fixed electrical conductivity """ # Set up cylindrically symmeric mesh cs, ncx, ncz, npad = 10., 15, 25, 13 # padded cyl mesh hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = Mesh.CylMesh([hx, 1, hz], '00C') # Geologic Parameters model layerz = np.r_[-100., -50.] layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1]) active = mesh.vectorCCz < 0. # Electrical Conductivity sig_half = 1e-2 # Half-space conductivity sig_air = 1e-8 # Air conductivity sig_layer = 1e-2 # Layer conductivity sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer # mur - relative magnetic permeability mur_half = 1. mur_air = 1. mur_layer = 2. mur = np.ones(mesh.nCz) * mur_air mur[active] = mur_half mur[layer] = mur_layer mtrue = mur[active] # Maps actMap = Maps.InjectActiveCells(mesh, active, mur_air, nC=mesh.nCz) surj1Dmap = Maps.SurjectVertical1D(mesh) murMap = Maps.MuRelative(mesh) # Mapping muMap = murMap * surj1Dmap * actMap # ----- FDEM problem & survey ----- rxlocs = Utils.ndgrid([np.r_[10.], np.r_[0], np.r_[30.]]) bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real') # bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag') freqs = np.linspace(2000, 10000, 10) #np.logspace(3, 4, 10) srcLoc = np.array([0., 0., 30.]) print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half), 'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half)) print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(), 'max z ', mesh.vectorCCz.max()) srcList = [ FDEM.Src.MagDipole([bzr], freq, srcLoc, orientation='Z') for freq in freqs ] surveyFD = FDEM.Survey(srcList) prbFD = FDEM.Problem3D_b(mesh, sigma=surj1Dmap * sigma, muMap=muMap, Solver=Solver) prbFD.pair(surveyFD) std = 0.03 surveyFD.makeSyntheticData(mtrue, std) surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-6 # FDEM inversion np.random.seed(13472) dmisfit = DataMisfit.l2_DataMisfit(surveyFD) regMesh = Mesh.TensorMesh([mesh.hz[muMap.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) opt = Optimization.InexactGaussNewton(maxIterCG=10) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Inversion Directives betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.) beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.) target = Directives.TargetMisfit() directiveList = [beta, betaest, target] inv = Inversion.BaseInversion(invProb, directiveList=directiveList) m0 = mur_half * np.ones(mtrue.size) reg.alpha_s = 2e-2 reg.alpha_x = 1. prbFD.counter = opt.counter = Utils.Counter() opt.remember('xc') moptFD = inv.run(m0) dpredFD = surveyFD.dpred(moptFD) if plotIt: fig, ax = plt.subplots(1, 3, figsize=(10, 6)) fs = 13 # fontsize matplotlib.rcParams['font.size'] = fs # Plot the conductivity model ax[0].semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2) ax[0].set_ylim(-500, 0) ax[0].set_xlim(5e-3, 1e-1) ax[0].set_xlabel('Conductivity (S/m)', fontsize=fs) ax[0].set_ylabel('Depth (m)', fontsize=fs) ax[0].grid(which='both', color='k', alpha=0.5, linestyle='-', linewidth=0.2) ax[0].legend(['Conductivity Model'], fontsize=fs, loc=4) # Plot the permeability model ax[1].plot(mur[active], mesh.vectorCCz[active], 'k-', lw=2) ax[1].plot(moptFD, mesh.vectorCCz[active], 'b-', lw=2) ax[1].set_ylim(-500, 0) ax[1].set_xlim(0.5, 2.1) ax[1].set_xlabel('Relative Permeability', fontsize=fs) ax[1].set_ylabel('Depth (m)', fontsize=fs) ax[1].grid(which='both', color='k', alpha=0.5, linestyle='-', linewidth=0.2) ax[1].legend(['True', 'Predicted'], fontsize=fs, loc=4) # plot the data misfits - negative b/c we choose positive to be in the # direction of primary ax[2].plot(freqs, -surveyFD.dobs, 'k-', lw=2) # ax[2].plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2) ax[2].loglog(freqs, -dpredFD, 'bo', ms=6) # ax[2].loglog(freqs, -dpredFD[1::2], 'b+', markeredgewidth=2., ms=10) # Labels, gridlines, etc ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2) ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2) ax[2].set_xlabel('Frequency (Hz)', fontsize=fs) ax[2].set_ylabel('Vertical magnetic field (-T)', fontsize=fs) # ax[2].legend(("Obs", "Pred"), fontsize=fs) ax[2].legend(("z-Obs (real)", "z-Pred (real)"), fontsize=fs) ax[2].set_xlim(freqs.max(), freqs.min()) ax[0].set_title("(a) Conductivity Model", fontsize=fs) ax[1].set_title("(b) $\mu_r$ Model", fontsize=fs) ax[2].set_title("(c) FDEM observed vs. predicted", fontsize=fs) # ax[2].set_title("(c) TDEM observed vs. predicted", fontsize=fs) plt.tight_layout(pad=1.5)
def fitWithStretchedExponetial(time, survey_ip, sources, Rho, start_time=None): if start_time is None: start_time = 0 # Choose all time channels tinds = time > start_time nLoc = survey_ip.dobs.T[tinds, :].shape[1] # Setup wire for different properties wires = Maps.Wires(('eta', nLoc), ('tau', nLoc), ('c', nLoc)) taumap = Maps.ExpMap(nP=nLoc) * wires.tau etamap = Maps.ExpMap(nP=nLoc) * wires.eta cmap = Maps.ExpMap(nP=nLoc) * wires.c # This is almost dummmy mesh and xyz loc at the moment # But, there is potential use later m1D = Mesh.TensorMesh([np.ones(nLoc)]) # # Set survey survey = SEMultiSurvey(time[tinds] * 1e-3, sources[:, :], n_pulse=2, T=4) survey.dobs = (survey_ip.dobs.T[tinds, :]).flatten(order='F') # Set problem prob = SEMultiInvProblem(m1D, etaMap=etamap, tauMap=taumap, cMap=cmap) prob.pair(survey) # Set initial model eta0, tau0, c0 = abs( survey_ip.dobs.T[0, :].T), 1. * np.ones(nLoc), 1. * np.ones(nLoc) m0 = np.r_[np.log(eta0), np.log(tau0), np.log(c0)] std = 0.02 plt.plot(survey.dpred(m0)) plt.plot(survey.dobs, '.') plt.title("Obs & pred") plt.xlabel("data point") plt.ylabel("value") plt.show() mreg = Mesh.TensorMesh([len(m0)]) dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = (abs(survey.dobs) * std + 0.01) * 1.1 dmisfit.W = 1. / uncert reg = Regularization.Simple(mreg) opt = Optimization.ProjectedGNCG(maxIter=20) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object target = Directives.TargetMisfit() invProb.beta = 0. inv = Inversion.BaseInversion(invProb, directiveList=[target]) # reg.mref = 0.*m0 prob.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') opt.tolX = 1e-20 opt.tolF = 1e-20 opt.tolG = 1e-20 opt.eps = 1e-20 m_upper = np.r_[np.ones_like(tau0) * np.log(200), np.ones_like(tau0) * np.log(10.), np.ones_like(tau0) * np.log(1.)] m_lower = np.r_[np.ones_like(tau0) * np.log(1), np.ones_like(tau0) * np.log(1e-2), np.ones_like(tau0) * np.log(0.1)] opt.lower = m_lower opt.upper = m_upper mopt = inv.run(m0) eta = etamap * mopt tau = taumap * mopt c = cmap * mopt DPRED = invProb.dpred.reshape((nLoc, time[tinds].size)) DOBS = survey.dobs.reshape((nLoc, time[tinds].size)) UNCERT = uncert.reshape((nLoc, time[tinds].size)) error = ((eta * 1e-3) / np.sqrt(np.sum((DOBS - DPRED)**2, axis=1) / time[tinds].size)) from matplotlib import colors fig = plt.figure(figsize=(6, 5)) active_inds = (Rho[:, 0] > 10.) & (Rho[:, 0] < 1e3) & (abs( (DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 1.) out = plt.scatter(tau[active_inds], c[active_inds], c=eta[active_inds], norm=colors.LogNorm(), cmap="magma", s=2) cb = plt.colorbar(out) plt.xscale('log') plt.yscale('log') plt.xlabel("Tau") plt.ylabel("c") cb.set_label("Eta (mV/V)") plt.show() inds = (abs((DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 20.) # print(inds) inds = np.arange(survey.n_location)[inds] out = plt.loglog(time[tinds], DPRED[inds[::2], :].T, 'r') out = plt.loglog(time[tinds], DOBS[inds[::2], :].T, 'kx') print(np.sum((DPRED - DOBS)**2) / time.size) fig, axs = plt.subplots(4, 1) properties = [ Rho[:, 0][active_inds], eta[active_inds], tau[active_inds], c[active_inds] ] titles = ["$\\rho_{a}$", "$\\eta_{a}$", "$\\tau_{a}$", "$c_{a}$"] colors = ['#1f77b4', 'seagreen', 'crimson', 'gold'] for i, ax in enumerate(axs): out = ax.hist(np.log10(properties[i]), bins=50, color=colors[i]) ax.set_title(titles[i]) ax.set_xticklabels([("%.1f") % (10**tick) for tick in ax.get_xticks()]) plt.tight_layout() plt.show() return eta, tau, c, error
def run(plotIt=True): """ EM: TDEM: 1D: Inversion ======================= Here we will create and run a TDEM 1D inversion. """ cs, ncx, ncz, npad = 5., 25, 15, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = Mesh.CylMesh([hx, 1, hz], '00C') active = mesh.vectorCCz < 0. layer = (mesh.vectorCCz < 0.) & (mesh.vectorCCz >= -100.) actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap sig_half = 2e-3 sig_air = 1e-8 sig_layer = 1e-3 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) rxOffset = 1e-3 rx = EM.TDEM.Rx.Point_b(np.array([[rxOffset, 0., 30]]), np.logspace(-5, -3, 31), 'z') src = EM.TDEM.Src.MagDipole([rx], loc=np.array([0., 0., 80])) survey = EM.TDEM.Survey([src]) prb = EM.TDEM.Problem3D_b(mesh, sigmaMap=mapping) prb.Solver = SolverLU prb.timeSteps = [(1e-06, 20), (1e-05, 20), (0.0001, 20)] prb.pair(survey) # create observed data std = 0.05 survey.dobs = survey.makeSyntheticData(mtrue, std) survey.std = std survey.eps = 1e-5 * np.linalg.norm(survey.dobs) dmisfit = DataMisfit.l2_DataMisfit(survey) regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Tikhonov(regMesh, alpha_s=1e-2, alpha_x=1.) opt = Optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest]) m0 = np.log(np.ones(mtrue.size) * sig_half) prb.counter = opt.counter = Utils.Counter() opt.remember('xc') mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 2, figsize=(10, 6)) ax[0].loglog(rx.times, survey.dtrue, 'b.-') ax[0].loglog(rx.times, survey.dobs, 'r.-') ax[0].legend(('Noisefree', '$d^{obs}$'), fontsize=16) ax[0].set_xlabel('Time (s)', fontsize=14) ax[0].set_ylabel('$B_z$ (T)', fontsize=16) ax[0].set_xlabel('Time (s)', fontsize=14) ax[0].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax[1].set_ylim(-600, 0) ax[1].set_xlim(1e-4, 1e-2) ax[1].set_xlabel('Conductivity (S/m)', fontsize=14) ax[1].set_ylabel('Depth (m)', fontsize=14) ax[1].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) plt.legend(['$\sigma_{true}$', '$\sigma_{pred}$'])
def run(plotIt=True, survey_type="dipole-dipole"): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0., 200. ymin, ymax = 0., 0. zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = DC.Utils.gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey.getABMN_locations() survey = IO.from_ambn_locations_to_survey( survey.a_locations, survey.b_locations, survey.m_locations, survey.n_locations, survey_type, data_dc_type='volt' ) # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() topo, mesh1D = DC.Utils.genTopography(mesh, -10, 0, its=100) actind = Utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo]) survey.drapeTopo(mesh, actind, option="top") # Build a conductivity model blk_inds_c = Utils.ModelBuilder.getIndicesSphere( np.r_[60., -25.], 12.5, mesh.gridCC ) blk_inds_r = Utils.ModelBuilder.getIndicesSphere( np.r_[140., -25.], 12.5, mesh.gridCC ) layer_inds = mesh.gridCC[:, 1] > -5. sigma = np.ones(mesh.nC)*1./100. sigma[blk_inds_c] = 1./10. sigma[blk_inds_r] = 1./1000. sigma[~actind] = 1./1e8 rho = 1./sigma # Show the true conductivity model if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( temp, grid=True, ax=ax, gridOpts={'alpha': 0.2}, clim=(10, 1000), pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()} ) ax.plot( survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'k.' ) ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect('equal') plt.show() # Use Exponential Map: m = log(rho) actmap = Maps.InjectActiveCells( mesh, indActive=actind, valInactive=np.log(1e8) ) mapping = Maps.ExpMap(mesh) * actmap # Generate mtrue mtrue = np.log(rho[actind]) # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Problem2D_N( mesh, rhoMap=mapping, storeJ=True, Solver=Solver ) # Pair problem with survey try: prb.pair(survey) except: survey.unpair() prb.pair(survey) geometric_factor = survey.set_geometric_factor( data_type="apparent_resistivity", survey_type='dipole-dipole', space_type='half-space' ) # Make synthetic DC data with 5% Gaussian noise dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True) IO.data_dc = dtrue # Show apparent resisitivty pseudo-section if plotIt: IO.plotPseudoSection( data=survey.dobs, data_type='apparent_resistivity' ) # Show apparent resisitivty histogram if plotIt: fig = plt.figure() out = hist(survey.dobs, bins=20) plt.xlabel("Apparent Resisitivty ($\Omega$m)") plt.show() # Set initial model based upon histogram m0 = np.ones(actmap.nP)*np.log(100.) # Set uncertainty # floor (10 ohm-m) eps = 1. # percentage std = 0.05 dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = abs(survey.dobs) * std + eps dmisfit.W = 1./uncert # Map for a regularization regmap = Maps.IdentityMap(nP=int(actind.sum())) # Related to inversion reg = Regularization.Sparse(mesh, indActive=actind, mapping=regmap) opt = Optimization.InexactGaussNewton(maxIter=15) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = Directives.TargetMisfit() updateSensW = Directives.UpdateSensitivityWeights() update_Jacobi = Directives.UpdatePreconditioner() inv = Inversion.BaseInversion( invProb, directiveList=[ beta, betaest, target, updateSensW, update_Jacobi ] ) prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') # Run inversion mopt = inv.run(m0) # Get diag(JtJ) mask_inds = np.ones(mesh.nC, dtype=bool) jtj = np.sqrt(updateSensW.JtJdiag[0]) jtj /= jtj.max() temp = np.ones_like(jtj, dtype=bool) temp[jtj > 0.005] = False mask_inds[actind] = temp actind_final = np.logical_and(actind, ~mask_inds) jtj_cc = np.ones(mesh.nC)*np.nan jtj_cc[actind] = jtj # Show the sensitivity if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( jtj_cc, grid=True, ax=ax, gridOpts={'alpha': 0.2}, clim=(0.005, 0.5), pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()} ) ax.plot( survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'k.' ) ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Sensitivity") ax.set_aspect('equal') plt.show() # Convert obtained inversion model to resistivity # rho = M(m), where M(.) is a mapping rho_est = mapping*mopt rho_est[~actind_final] = np.nan rho_true = rho.copy() rho_true[~actind_final] = np.nan # show recovered conductivity if plotIt: vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(2, 1, figsize=(20, 6)) out1 = mesh.plotImage( rho_true, clim=(10, 1000), pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()}, ax=ax[0] ) out2 = mesh.plotImage( rho_est, clim=(10, 1000), pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()}, ax=ax[1] ) out = [out1, out2] for i in range(2): ax[i].plot( survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], 'kv' ) ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect('equal') plt.tight_layout() plt.show()
def run(plotIt=True): """ EM: TDEM: 1D: Inversion with VTEM waveform ========================================== Here we will create and run a TDEM 1D inversion, with VTEM waveform of which initial condition is zero, but have some on- and off-time. """ cs, ncx, ncz, npad = 5., 25, 24, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = Mesh.CylMesh([hx, 1, hz], '00C') active = mesh.vectorCCz < 0. layer = (mesh.vectorCCz < -50.) & (mesh.vectorCCz >= -150.) actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap sig_half = 1e-3 sig_air = 1e-8 sig_layer = 1e-2 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) x = np.r_[30, 50, 70, 90] rxloc = np.c_[x, x * 0., np.zeros_like(x)] prb = EM.TDEM.Problem3D_b(mesh, sigmaMap=mapping) prb.Solver = Solver prb.timeSteps = [(1e-3, 5), (1e-4, 5), (5e-5, 10), (5e-5, 5), (1e-4, 10), (5e-4, 10)] # Use VTEM waveform out = EM.Utils.VTEMFun(prb.times, 0.00595, 0.006, 100) # Forming function handle for waveform using 1D linear interpolation wavefun = interp1d(prb.times, out) t0 = 0.006 waveform = EM.TDEM.Src.RawWaveform(offTime=t0, waveFct=wavefun) rx = EM.TDEM.Rx.Point_dbdt(rxloc, np.logspace(-4, -2.5, 11) + t0, 'z') src = EM.TDEM.Src.CircularLoop([rx], waveform=waveform, loc=np.array([0., 0., 0.]), radius=10.) survey = EM.TDEM.Survey([src]) prb.pair(survey) # create observed data std = 0.02 survey.dobs = survey.makeSyntheticData(mtrue, std) # dobs = survey.dpred(mtrue) survey.std = std survey.eps = 1e-11 dmisfit = DataMisfit.l2_DataMisfit(survey) regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) opt = Optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5) invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) target = Directives.TargetMisfit() # Create an inversion object beta = Directives.BetaSchedule(coolingFactor=1., coolingRate=2.) betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0) invProb.beta = 1e2 inv = Inversion.BaseInversion(invProb, directiveList=[beta, target]) m0 = np.log(np.ones(mtrue.size) * sig_half) prb.counter = opt.counter = Utils.Counter() opt.remember('xc') mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 2, figsize=(10, 6)) Dobs = survey.dobs.reshape((len(rx.times), len(x))) Dpred = invProb.dpred.reshape((len(rx.times), len(x))) for i in range(len(x)): ax[0].loglog(rx.times - t0, -Dobs[:, i].flatten(), 'k') ax[0].loglog(rx.times - t0, -Dpred[:, i].flatten(), 'k.') if i == 0: ax[0].legend(('$d^{obs}$', '$d^{pred}$'), fontsize=16) ax[0].set_xlabel('Time (s)', fontsize=14) ax[0].set_ylabel('$db_z / dt$ (nT/s)', fontsize=16) ax[0].set_xlabel('Time (s)', fontsize=14) ax[0].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax[1].set_ylim(-600, 0) ax[1].set_xlim(1e-4, 1e-1) ax[1].set_xlabel('Conductivity (S/m)', fontsize=14) ax[1].set_ylabel('Depth (m)', fontsize=14) ax[1].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5) plt.legend(['$\sigma_{true}$', '$\sigma_{pred}$'])