import SimPy.EconEval as EconEval np.random.seed(573) cost_base = np.random.normal(loc=10000, scale=100, size=1000) effect_base = np.random.normal(loc=1, scale=.1, size=1000) cost_intervention = np.random.normal(loc=20000, scale=200, size=1000) effect_intervention = np.random.normal(loc=2, scale=.2, size=1000) print('') # ICER calculation assuming paired observations ICER_paired = EconEval.ICER_Paired(name='Testing paired ICER', costs_new=cost_intervention, effects_new=effect_intervention, costs_base=cost_base, effects_base=effect_base) print('Paired ICER:' '\n\tICER: {} ' '\n\tCI (boostrap): {} ' '\n\tCI (Bayesian): {} ' '\n\tPI: {}'.format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05), ICER_paired.get_CI(0.05, method='Bayesian'), ICER_paired.get_PI(0.05))) # ICER calculation assuming independent observations ICER_indp = EconEval.ICER_Indp('Testing independent ICER', costs_new=cost_intervention, effects_new=effect_intervention, costs_base=cost_base,
import SimPy.EconEval as EconEval np.random.seed(573) cost_base = np.random.normal(loc=10000, scale=100, size=1000) effect_base = np.random.normal(loc=2, scale=.1, size=1000) cost_intervention = np.random.normal(loc=20000, scale=200, size=1000) effect_intervention = np.random.normal(loc=1, scale=.2, size=1000) print('') # ICER calculation assuming paired observations ICER_paired = EconEval.ICER_Paired('Testing paired ICER', cost_intervention, effect_intervention, cost_base, effect_base, health_measure='d') print( 'Paired ICER:\n\tICER: {} \n\tCI (boostrap): {} \n\tCI (Bayesian): {} \n\tPI: ' .format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05, 1000), ICER_paired.get_CI(0.05, 1000, method='Bayesian'), ICER_paired.get_PI(0.05))) # ICER calculation assuming independent observations ICER_indp = EconEval.ICER_Indp('Testing independent ICER', cost_intervention, effect_intervention, cost_base, effect_base, health_measure='d')