import SimPy.EconEval as EconEval

np.random.seed(573)

cost_base = np.random.normal(loc=10000, scale=100, size=1000)
effect_base = np.random.normal(loc=1, scale=.1, size=1000)
cost_intervention = np.random.normal(loc=20000, scale=200, size=1000)
effect_intervention = np.random.normal(loc=2, scale=.2, size=1000)

print('')

# ICER calculation assuming paired observations
ICER_paired = EconEval.ICER_Paired(name='Testing paired ICER',
                                   costs_new=cost_intervention,
                                   effects_new=effect_intervention,
                                   costs_base=cost_base,
                                   effects_base=effect_base)
print('Paired ICER:'
      '\n\tICER: {} '
      '\n\tCI (boostrap): {} '
      '\n\tCI (Bayesian): {} '
      '\n\tPI: {}'.format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05),
                          ICER_paired.get_CI(0.05, method='Bayesian'),
                          ICER_paired.get_PI(0.05)))

# ICER calculation assuming independent observations
ICER_indp = EconEval.ICER_Indp('Testing independent ICER',
                               costs_new=cost_intervention,
                               effects_new=effect_intervention,
                               costs_base=cost_base,
import SimPy.EconEval as EconEval

np.random.seed(573)

cost_base = np.random.normal(loc=10000, scale=100, size=1000)
effect_base = np.random.normal(loc=2, scale=.1, size=1000)
cost_intervention = np.random.normal(loc=20000, scale=200, size=1000)
effect_intervention = np.random.normal(loc=1, scale=.2, size=1000)

print('')

# ICER calculation assuming paired observations
ICER_paired = EconEval.ICER_Paired('Testing paired ICER',
                                   cost_intervention,
                                   effect_intervention,
                                   cost_base,
                                   effect_base,
                                   health_measure='d')
print(
    'Paired ICER:\n\tICER: {} \n\tCI (boostrap): {} \n\tCI (Bayesian): {} \n\tPI: '
    .format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05, 1000),
            ICER_paired.get_CI(0.05, 1000, method='Bayesian'),
            ICER_paired.get_PI(0.05)))

# ICER calculation assuming independent observations
ICER_indp = EconEval.ICER_Indp('Testing independent ICER',
                               cost_intervention,
                               effect_intervention,
                               cost_base,
                               effect_base,
                               health_measure='d')