Пример #1
0
    def sample_indices(self, rng):
        """
        :param rng: random number generator
        :return: (list) indices of sampled categories
                        (in the example above, [1, 0] corresponds to age group 1 and sex group 0.
        """

        probs = []
        if self._ifOneDim:
            probs = self._objs
        else:
            for df in self._objs:
                probs.append(df.get_sum())

        empirical_dist = RVGs.Empirical(probabilities=np.array(probs) /
                                        sum(probs))

        idx = empirical_dist.sample(rng=rng)

        if self._ifOneDim:
            return [idx]
        else:
            a = [idx]
            a.extend(self._objs[idx].sample_indices(rng))
            return a
Пример #2
0
def test_fitting_empirical():

    print("\nTesting empirical with p=[0.1, 0.2, 0.7]")
    dist = RVGs.Empirical(probabilities=[0.1, 0.2, 0.7])

    data = np.array(get_samples(dist, np.random))
    # method of moments
    dict_mm_results = RVGs.Empirical.fit_mm(data=data, bin_size=1)

    print("  Fit:")
    print("    MM:", dict_mm_results)
Пример #3
0
def test_empirical(rnd, prob):
    # empirical random variate generator
    empirical_dist = RVGs.Empirical(prob)

    # obtain samples
    samples = get_samples(empirical_dist, rnd)

    # report mean and variance
    if type(prob) == list:
        prob = np.array(prob)

    outcome = np.array(range(len(prob)))

    mean = sum(outcome * prob)
    var = sum((outcome**2) * prob) - mean**2

    print_test_results('Empirical', samples, expectation=mean, variance=var)