def getFeatureExtractors(self):
     hueHistogramFeatureExtractor = HueHistogramFeatureExtractor(10)
     edgeHistogramFeatureExtractor = EdgeHistogramFeatureExtractor(10)
     haarLikeFeatureExtractor = HaarLikeFeatureExtractor(
         fname='/Users/burton/Downloads/SimpleCV/SimpleCV/Features/haar.txt'
     )
     return [
         hueHistogramFeatureExtractor, edgeHistogramFeatureExtractor,
         haarLikeFeatureExtractor
     ]
Пример #2
0
 def createExtractor(self, extractorName, trainPaths=[]):
     if (extractorName == 'hue'):
         extractor = HueHistogramFeatureExtractor(10)
     elif (extractorName == 'edge'):
         extractor = EdgeHistogramFeatureExtractor(10)
     elif (extractorName == 'haar'):
         extractor = HaarLikeFeatureExtractor(fname='haar.txt')
     elif (extractorName == 'bof'):
         extractor = BOFFeatureExtractor()
         extractor.generate(trainPaths, imgs_per_dir=40)
         # need to build the vocabuary (feature words) for bag of feature
         # extractor.generate(trainPaths, imgs_per_dir=40)
     return extractor
Пример #3
0
from sklearn.ensemble import AdaBoostClassifier
from sklearn import cross_validation

from SimpleCV import Image
from SimpleCV import HueHistogramFeatureExtractor
from SimpleCV import HaarLikeFeatureExtractor
from SimpleCV import EdgeHistogramFeatureExtractor

import numpy as np
from glob import glob
import pickle

# model to extract feature
hhfe = HueHistogramFeatureExtractor(10)
ehfe = EdgeHistogramFeatureExtractor(10)
haarfe = HaarLikeFeatureExtractor('haar.txt')

# Give path of the training folder
images = glob('./fruits/*')


# Extract features and target labels for training
def get_feature_labels():
    features = list()
    labels = list()
    for im in images:
        try:
            img = Image(im)
            labels.append(im[:-2])
            features.append(
                np.concatenate([
Пример #4
0
from glob import glob

from SimpleCV import Image
from SimpleCV import HueHistogramFeatureExtractor
from SimpleCV import HaarLikeFeatureExtractor
from SimpleCV import EdgeHistogramFeatureExtractor

from matplotlib import pyplot as plt
import os

from Services.MainServices import make_histogram

dataDir = os.path.dirname(os.path.abspath(__file__))
haar_file = os.path.join(dataDir, "../data/haar.txt")

haarfe = HaarLikeFeatureExtractor(fname=haar_file)
hhfe = HueHistogramFeatureExtractor(10)
ehfe = EdgeHistogramFeatureExtractor(10)

classifier = pickle.load(
    open(os.path.join(dataDir, "../data/classifier.pkl"), 'rb'))
labels = pickle.load(open(os.path.join(dataDir, "../data/featLabel.pkl"),
                          'rb'))


def predictor():
    for img in glob('/home/linuxsagar/tempTest/*'):

        #List to hold the feature of new Image
        _new_features = []