def main(night_name=None, reffile=None): """ cal_DRIFTPEAK_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_DRIFTPEAK_E2DS_spirou.py [night_directory] [reffile] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param reffile: string, the reference file to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with reference file being None (i.e. get from sys.argv) if reffile is None: customargs = spirouStartup.GetCustomFromRuntime( p, [0], [str], ['reffile']) else: customargs = dict(reffile=reffile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='reffile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE']) p['REFFILENAME'] = reffilename p.set_source('REFFILENAME', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data speref, hdr, nbo, nx = spirouImage.ReadData(p, p['REFFILENAME']) # add to loc loc = ParamDict() loc['SPEREF'] = speref loc['NUMBER_ORDERS'] = nbo loc.set_sources(['SPEREF', 'NUMBER_ORDERS'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get lamp type # ---------------------------------------------------------------------- # get lamp type if p['KW_EXT_TYPE'][0] in hdr: ext_type = hdr[p['KW_EXT_TYPE'][0]] drift_types = p['DRIFT_PEAK_ALLOWED_TYPES'].keys() found = False for kind in drift_types: if ext_type == kind: loc['LAMP'] = p['DRIFT_PEAK_ALLOWED_TYPES'][kind] found = True if not found: eargs1 = [p['KW_EXT_TYPE'][0], ' or '.join(drift_types)] emsg1 = ( 'Wrong type of image for Drift, header key "{0}" should be' '{1}'.format(*eargs1)) emsg2 = '\tPlease check DRIFT_PEAK_ALLOWED_TYPES' WLOG(p, 'error', [emsg1, emsg2]) else: emsg = 'Header key = "{0}" missing from file {1}' eargs = [p['KW_EXT_TYPE'][0], p['REFFILENAME']] WLOG(p, 'error', emsg.format(*eargs)) loc.set_source('LAMP', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image source = __NAME__ + '/main() + /spirouImage.GetWaveSolution' wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # get flat p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # correct for flat file loc['SPEREF'] = loc['SPEREF'] / loc['FLAT'] # ---------------------------------------------------------------------- # Background correction # ---------------------------------------------------------------------- # test whether we want to subtract background if p['IC_DRIFT_BACK_CORR']: # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Measurethe min and max flux miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num], bsize) # subtract off the background (miny) loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny # ---------------------------------------------------------------------- # Identify FP peaks in reference file # ---------------------------------------------------------------------- # log that we are identifying peaks wmsg = 'Identification of lines in reference file: {0}' WLOG(p, '', wmsg.format(p['REFFILE'])) # get the position of FP peaks from reference file loc = spirouRV.CreateDriftFile(p, loc) # ---------------------------------------------------------------------- # Removal of suspiciously wide FP lines # ---------------------------------------------------------------------- loc = spirouRV.RemoveWidePeaks(p, loc) # ---------------------------------------------------------------------- # Get reference drift # ---------------------------------------------------------------------- # are we using gaussfit? gaussfit = p['DRIFT_PEAK_GETDRIFT_GAUSSFIT'] # get drift loc['XREF'] = spirouRV.GetDrift(p, loc['SPEREF'], loc['ORDPEAK'], loc['XPEAK'], gaussfit=gaussfit) loc.set_source('XREF', __NAME__ + '/main()') # remove any drifts that are zero (i.e. peak not measured loc = spirouRV.RemoveZeroPeaks(p, loc) # ------------------------------------------------------------------ # Reference plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order sPlt.drift_plot_selected_wave_ref(p, loc) # ------------------------------------------------------------------ # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from # ref file # ------------------------------------------------------------------ # get files listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr) # get the number of files nfiles = len(listfiles) # Log the number of files found wmsgs = [ 'Number of files found on directory = {0}'.format(nfiles), '\tExtensions allowed:' ] for listtype in listtypes: wmsgs.append('\t\t - {0}'.format(listtype)) WLOG(p, 'info', wmsgs) # ------------------------------------------------------------------ # Set up Extract storage for all files # ------------------------------------------------------------------ # decide whether we need to skip (for large number of files) if len(listfiles) >= p['DRIFT_NLARGE']: skip = p['DRIFT_PEAK_FILE_SKIP'] nfiles = int(nfiles / skip) else: skip = 1 # set up storage loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['DRIFT_LEFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['DRIFT_RIGHT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['DELTATIME'] = np.zeros(nfiles) loc['MEANRV'] = np.zeros(nfiles) loc['MEANRV_LEFT'] = np.zeros(nfiles) loc['MEANRV_RIGHT'] = np.zeros(nfiles) loc['MERRDRIFT'] = np.zeros(nfiles) loc['FLUXRATIO'] = np.zeros(nfiles) # add sources source = __NAME__ + '/main()' keys = [ 'drift', 'drift_left', 'drift_right', 'errdrift', 'deltatime', 'meanrv', 'meanrv_left', 'meanrv_right', 'merrdrift', 'fluxratio' ] loc.set_sources(keys, source) # ------------------------------------------------------------------ # Loop around all files: correct for dark, reshape, extract and # calculate dvrms and meanpond # ------------------------------------------------------------------ # get the maximum number of orders to use nomin = p['IC_DRIFT_PEAK_N_ORDER_MIN'] nomax = p['IC_DRIFT_PEAK_N_ORDER_MAX'] # loop around files for i_it in range(nfiles): # get file for this iteration fpfile = listfiles[::skip][i_it] # Log the file we are reading wmsg = 'Reading file {0}' WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1])) # ------------------------------------------------------------------ # read e2ds files and get timestamp # ------------------------------------------------------------------ # read data rout = spirouImage.ReadData(p, filename=fpfile, log=False) loc['SPE'], hdri, nxi, nyi = rout # apply flat loc['SPE'] = loc['SPE'] / loc['FLAT'] # get acqtime bjdspe = spirouImage.GetAcqTime(p, hdri, name='acqtime', return_value=1, kind='julian') # ---------------------------------------------------------------------- # Background correction # ---------------------------------------------------------------------- # test whether we want to subtract background if p['IC_DRIFT_BACK_CORR']: # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Measurethe min and max flux miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num], bsize) # subtract off the background (miny) loc['SPE'][order_num] = loc['SPE'][order_num] - miny # ------------------------------------------------------------------ # calculate flux ratio # ------------------------------------------------------------------ sorder = p['IC_DRIFT_ORDER_PLOT'] fratio = np.nansum(loc['SPE'][sorder]) / np.nansum( loc['SPEREF'][sorder]) loc['FLUXRATIO'][i_it] = fratio # ------------------------------------------------------------------ # Calculate delta time # ------------------------------------------------------------------ # calculate the time from reference (in hours) loc['DELTATIME'][i_it] = (bjdspe - bjdref) * 24 # ------------------------------------------------------------------ # Calculate PearsonR coefficient # ------------------------------------------------------------------ pargs = [loc['NUMBER_ORDERS'], loc['SPE'], loc['SPEREF']] correlation_coeffs = spirouRV.PearsonRtest(*pargs) # ---------------------------------------------------------------------- # Get drift with comparison to the reference image # ---------------------------------------------------------------------- # only calculate drift if the correlation between orders and # reference file is above threshold prcut = p['DRIFT_PEAK_PEARSONR_CUT'] if np.min(correlation_coeffs[nomin:nomax]) > prcut: # get drifts for each order dargs = [p, loc['SPE'], loc['ORDPEAK'], loc['XREF']] x = spirouRV.GetDrift(*dargs, gaussfit=gaussfit) # get delta v loc['DV'] = (x - loc['XREF']) * loc['VRPEAK'] # sigma clip loc = spirouRV.SigmaClip(loc, sigma=p['DRIFT_PEAK_SIGMACLIP']) # work out median drifts per order loc = spirouRV.DriftPerOrder(loc, i_it) # work out mean drift across all orders loc = spirouRV.DriftAllOrders(p, loc, i_it, nomin, nomax) # log the mean drift wmsg = ('Time from ref= {0:.2f} h - Flux Ratio= {1:.3f} ' '- Drift mean= {2:.2f} +- {3:.2f} m/s') wargs = [ loc['DELTATIME'][i_it], loc['FLUXRATIO'][i_it], loc['MEANRV'][i_it], loc['MERRDRIFT'][i_it] ] WLOG(p, 'info', wmsg.format(*wargs)) # else we can't use this extract else: if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.plt.ioff() # plot comparison between spe and ref sPlt.drift_plot_correlation_comp(p, loc, correlation_coeffs, i_it) sPlt.plt.show() sPlt.plt.close() # turn interactive plotting back on sPlt.plt.ion() # log that we cannot use this extraction wmsg1 = 'The correlation of some orders compared to the template is' wmsg2 = ' < {0}, something went wrong in the extract.' WLOG(p, 'warning', wmsg1) WLOG(p, 'warning', wmsg2.format(prcut)) # ------------------------------------------------------------------ # peak to peak drift driftptp = np.max(loc['MEANRV']) - np.min(loc['MEANRV']) driftrms = np.std(loc['MEANRV']) # log th etotal drift peak-to-peak and rms wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in ' '{2:.2f} hour') wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])] WLOG(p, '', wmsg.format(*wargs)) # ------------------------------------------------------------------ # Plot of mean drift # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot delta time against median drift sPlt.drift_peak_plot_dtime_against_drift(p, loc) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # TODO: Needs doing # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # add to qc header lists qc_values.append('None') qc_names.append('None') qc_logic.append('None') qc_pass.append(1) # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # Save drift values to file # ------------------------------------------------------------------ # get raw input file name raw_infile = os.path.basename(p['REFFILE']) # construct filename driftfits, tag = spirouConfig.Constants.DRIFTPEAK_E2DS_FITS_FILE(p) driftfitsname = os.path.split(driftfits)[-1] # log that we are saving drift values wmsg = 'Saving drift values of Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname)) # add keys from original header file hdict = spirouImage.CopyOriginalKeys(hdr) # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # save drift values p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict) # ------------------------------------------------------------------ # print .tbl result # ------------------------------------------------------------------ # construct filename drifttbl = spirouConfig.Constants.DRIFTPEAK_E2DS_TBL_FILE(p) drifttblname = os.path.split(drifttbl)[-1] # construct and write table columnnames = ['time', 'drift', 'drifterr', 'drift_left', 'drift_right'] columnformats = ['7.4f', '6.2f', '6.3f', '6.2f', '6.2f'] columnvalues = [ loc['DELTATIME'], loc['MEANRV'], loc['MERRDRIFT'], loc['MEANRV_LEFT'], loc['MEANRV_RIGHT'] ] table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table wmsg = 'Average Drift saved in {0} Saved ' WLOG(p, '', wmsg.format(drifttblname)) spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Plot amp and llpeak # ------------------------------------------------------------------ if p['DRS_PLOT'] and p['DRIFT_PEAK_PLOT_LINE_LOG_AMP']: # start interactive session if needed sPlt.start_interactive_session(p) # plot delta time against median drift sPlt.drift_peak_plot_llpeak_amps(p, loc) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, e2dsfile=None, mask=None, rv=None, width=None, step=None): """ cal_CCF_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV] [width] [step] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param e2dsfile: string, the E2DS file to use :param mask: string, the mask file to use (i.e. "UrNe.mas") :param rv: float, the target RV to use :param width: float, the CCF width to use :param step: float, the CCF step to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with arguments being None (i.e. get from sys.argv) pos = [0, 1, 2, 3, 4] fmt = [str, str, float, float, float] name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step'] lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step'] req = [True, True, True, False, False] call = [e2dsfile, mask, rv, width, step] call_priority = [True, True, True, True, True] # now get custom arguments customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req, call, call_priority, lname) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='e2dsfile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE']) # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Deal with optional run time arguments # ---------------------------------------------------------------------- # define default arguments (if ccf_width and ccf_step are not defined # in function call or run time arguments if 'ccf_width' not in p: p['CCF_WIDTH'] = p['IC_CCF_WIDTH'] if 'ccf_step' not in p: p['CCF_STEP'] = p['IC_CCF_STEP'] # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename) # add to loc loc = ParamDict() loc['E2DS'] = e2ds loc['NUMBER_ORDERS'] = nbo loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') # get obj name p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str) bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # ---------------------------------------------------------------------- # Earth Velocity calculation # ---------------------------------------------------------------------- if p['IC_IMAGE_TYPE'] == 'H4RG': p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr) # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # log WLOG(p, '', 'Reading wavelength solution ') # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) param_ll, wave_ll, wavefile, wsource = wout # save to storage loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()' loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # TODO We do not need to correct FLAT # log # WLOG(p, '', 'Reading Flat-Field ') # get flat # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # get blaze # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr) p, blaze0 = spirouImage.ReadBlazeFile(p, hdr) # ---------------------------------------------------------------------- # Preliminary set up = no flat, no blaze # ---------------------------------------------------------------------- # reset flat to all ones # loc['FLAT'] = np.ones((nbo, nx)) # set blaze to all ones (if not bug in correlbin !!! # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((nbo, nx)) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_sources(['blaze'], __NAME__ + '/main()') # Modification of E2DS array with N.A.N if np.isnan(np.sum(e2ds)): WLOG(p, 'warning', 'NaN values found in e2ds, converting process') # First basic approach Replacing N.A.N by zeros # e2ds[np.isnan(e2ds)] = 0 # Second approach replacing N.A.N by the Adjusted Blaze e2dsb = e2ds / blaze0 for i in np.arange(len(e2ds)): with warnings.catch_warnings(record=True) as _: rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])]) if np.isnan(rap): rap = 0.0 e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap) # ---------------------------------------------------------------------- # correct extracted image for flat # ---------------------------------------------------------------------- # loc['E2DSFF'] = e2ds/loc['FLAT'] # loc['E2DSFF'] = e2ds*1. loc['E2DSFF'] = e2ds loc.set_source('E2DSFF', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Compute photon noise uncertainty for reference file # ---------------------------------------------------------------------- # set up the arguments for DeltaVrms2D dargs = [loc['E2DS'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s' WLOG(p, 'info', wmsg.format(wmeanref)) # TEST N.A.N # loc['E2DSFF'][20:22,2000:3000]=np.nan # e2ds[20:30,1000:3000]=np.nan # ---------------------------------------------------------------------- # Reference plots # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order sPlt.drift_plot_selected_wave_ref(p, loc, x=loc['WAVE_LL'], y=loc['E2DS']) # plot photon noise uncertainty sPlt.drift_plot_photon_uncertainty(p, loc) # ---------------------------------------------------------------------- # Get template RV (from ccf_mask) # ---------------------------------------------------------------------- # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # check and deal with mask in microns (should be in nm) if np.mean(loc['LL_MASK_CTR']) < 2.0: loc['LL_MASK_CTR'] *= 1000.0 loc['LL_MASK_D'] *= 1000.0 # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=0) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # ---------------------------------------------------------------------- # set the source keys = [ 'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # TODO: Needs doing # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # add to qc header lists qc_values.append('None') qc_names.append('None') qc_logic.append('None') qc_pass.append(1) # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ---------------------------------------------------------------------- # archive ccf to table # ---------------------------------------------------------------------- # construct filename res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p) # log progress WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file)) # define column names columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig'] # define values for each column values = [ loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'], np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]), loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2] ] # define the format for each column formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f'] # construct astropy table from column names, values and formats table = spirouImage.MakeTable(p, columns, values, formats) # save table to file spirouImage.WriteTable(p, table, res_table_file, fmt='ascii') # ---------------------------------------------------------------------- # archive ccf to fits file # ---------------------------------------------------------------------- raw_infile = os.path.basename(p['E2DSFILE']) # construct folder and filename corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p) corfilename = os.path.split(corfile)[-1] # log that we are archiving the CCF on file WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename)) # get constants from p mask = p['CCF_MASK'] # if file exists remove it if os.path.exists(corfile): os.remove(corfile) # add the average ccf to the end of ccf data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']]) # add drs keys hdict = spirouImage.CopyOriginalKeys(hdr) hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file', values=p['E2DSFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_INCCFMASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH']) hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add CCF keys hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s') hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CRVAL'], value=loc['RV_CCF'][0]) # the rv step rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep) # add ccf stats hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RV'], value=loc['CCF_RES'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_WMREF'], value=loc['WMEANREF']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CONTRAST'], value=loc['CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MAXCPP'], value=loc['MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_LINES'], value=np.nansum(loc['TOT_LINE'])) # add berv values hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV']) hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD']) hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_MAX'], value=loc['BERV_MAX']) # write image and add header keys (via hdict) p = spirouImage.WriteImage(p, corfile, data, hdict) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def part2test(p, loc): # ------------------------------------------------------------------ # Fit wavelength solution on identified lines (using Littrow) # ------------------------------------------------------------------ # log message wmsg = ('On fiber {0} fitting wavelength solution on identified ' 'lines: (second pass)') WLOG(p, '', wmsg.format(p['FIBER'])) # fit lines start, end = p['IC_HC_N_ORD_START_2'], p['IC_HC_N_ORD_FINAL_2'] lls = loc['LITTROW_EXTRAP_SOL_1'][start:end] loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2) # ------------------------------------------------------------------ # Littrow test # ------------------------------------------------------------------ ckwargs = dict(ll=loc['LL_OUT_2'], iteration=2, log=True) loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs) # ------------------------------------------------------------------ # Plot wave solution littrow check # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_check_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # ------------------------------------------------------------------ # extrapolate Littrow solution # ------------------------------------------------------------------ ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2) loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs) # ------------------------------------------------------------------ # Plot littrow solution # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_extrap_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # Join 0-24 and 25-36 solutions # ------------------------------------------------------------------ loc = spirouTHORCA.JoinOrders(p, loc) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] # check for infinites and NaNs in X_MEAN_2 if ~np.isfinite(loc['X_MEAN_2']): # add failed message to the fail message list fmsg = 'NaN or Inf in X_MEAN_2' fail_msg.append(fmsg) passed = False # iterate through Littrow test cut values # for x_it in range(len(loc['X_CUT_POINTS_2'])): for x_it in range(1, len(loc['X_CUT_POINTS_2']), 2): # get x cut point x_cut_point = loc['X_CUT_POINTS_2'][x_it] # get the sigma for this cut point sig_littrow = loc['LITTROW_SIG_2'][x_it] # get the abs min and max dev littrow values min_littrow = abs(loc['LITTROW_MINDEV_2'][x_it]) max_littrow = abs(loc['LITTROW_MAXDEV_2'][x_it]) # check if sig littrow is above maximum rms_littrow_max = p['QC_RMS_LITTROW_MAX'] dev_littrow_max = p['QC_DEV_LITTROW_MAX'] if sig_littrow > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f})') fargs = [x_cut_point, sig_littrow, rms_littrow_max] fail_msg.append(fmsg.format(*fargs)) passed = False # check if min/max littrow is out of bounds if np.max([max_littrow, min_littrow]) > dev_littrow_max: fmsg = ('Littrow test (x={0}) failed (min|max dev = ' '{1:.2f}|{2:.2f} > {3:.2f})') fargs = [x_cut_point, min_littrow, max_littrow, dev_littrow_max] fail_msg.append(fmsg.format(*fargs)) passed = False # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # ------------------------------------------------------------------ # archive result in e2ds spectra # ------------------------------------------------------------------ # get raw input file name raw_infile1 = os.path.basename(p['HCFILES'][0]) raw_infile2 = os.path.basename(p['FPFILE']) # get wave filename wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_FP(p) wavefitsname = os.path.split(wavefits)[-1] WLOG(p, '', wavefits) # log progress wargs = [p['FIBER'], wavefitsname] wmsg = 'Write wavelength solution for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # write solution to fitsfilename header # copy original keys hdict = spirouImage.CopyOriginalKeys(loc['HCHDR']) # add version number hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) # add quality control hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) # add number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['LL_PARAM_FINAL'].shape[0]) # add degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['LL_PARAM_FINAL'].shape[1] - 1) # add wave solution hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['LL_PARAM_FINAL']) # write original E2DS file and add header keys (via hdict) # spirouImage.WriteImage(p['FITSFILENAME'], loc['HCDATA'], hdict) # write the wave "spectrum" p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict) # get filename for E2DS calibDB copy of FITSFILENAME e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p) wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]] wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # make a copy of the E2DS file for the calibBD hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2) p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict) # ------------------------------------------------------------------ # Save to result table # ------------------------------------------------------------------ # calculate stats for table final_mean = 1000 * loc['X_MEAN_2'] final_var = 1000 * loc['X_VAR_2'] num_iterations = int(np.nansum(loc['X_ITER_2'][:, 2])) err = 1000 * np.sqrt(final_var / num_iterations) sig_littrow = 1000 * np.array(loc['LITTROW_SIG_2']) # construct filename wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_FP(p) wavetblname = os.path.split(wavetbl)[-1] # construct and write table columnnames = [ 'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err', 'rms_L0', 'rms_L1', 'rms_L2' ] columnformats = [ '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}' ] columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]], [p['FIBER']], [final_mean], [final_var], [num_iterations], [err], [sig_littrow[0]], [sig_littrow[1]], [sig_littrow[2]]] # make table table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # merge table wmsg = 'Global result summary saved in {0}' WLOG(p, '', wmsg.format(wavetblname)) spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Save line list table file # ------------------------------------------------------------------ # construct filename wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE(p) wavelltblname = os.path.split(wavelltbl)[-1] # construct and write table columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx'] columnformats = [ '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}', '{:8.4f}' ] columnvalues = [] # construct column values (flatten over orders) for it in range(len(loc['X_DETAILS_2'])): for jt in range(len(loc['X_DETAILS_2'][it][0])): row = [ float(it), loc['X_DETAILS_2'][it][0][jt], loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt], loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt] ] columnvalues.append(row) # log saving wmsg = 'List of lines used saved in {0}' WLOG(p, '', wmsg.format(wavelltblname)) # make table columnvalues = np.array(columnvalues).T table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Move to calibDB and update calibDB # ------------------------------------------------------------------ # if p['QC']: # # set the wave key # keydb = 'WAVE_{0}'.format(p['FIBER']) # # copy wave file to calibDB folder # spirouDB.PutFile(p, wavefits) # # update the master calib DB file with new key # spirouDB.UpdateMaster(p, keydb, wavefitsname, loc['HCHDR']) # # # set the hcref key # keydb = 'HCREF_{0}'.format(p['FIBER']) # # copy wave file to calibDB folder # spirouDB.PutFile(p, e2dscopy_filename) # # update the master calib DB file with new key # e2dscopyfits = os.path.split(e2dscopy_filename)[-1] # spirouDB.UpdateMaster(p, keydb, e2dscopyfits, loc['HCHDR']) # return p and loc return p, loc
def main(night_name=None, files=None, fiber_type=None, **kwargs): """ cal_DRIFT_E2DS_spirou.py main function, if night_name and files are None uses arguments from run time i.e.: cal_DRIFT_E2DS_spirou.py [night_directory] [files] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param files: string, list or None, the list of files to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :param fiber_type: string, if None does all fiber types (defined in constants_SPIROU FIBER_TYPES (default is AB, A, B, C if defined then only does this fiber type (but must be in FIBER_TYPES) :param kwargs: any keyword to overwrite constant in param dict "p" :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) p = spirouStartup.LoadArguments(p, night_name, files) p = spirouStartup.InitialFileSetup(p, calibdb=True) # deal with fiber type if fiber_type is None: fiber_type = p['FIBER_TYPES'] if type(fiber_type) == str: if fiber_type.upper() == 'ALL': fiber_type = p['FIBER_TYPES'] elif fiber_type in p['FIBER_TYPES']: fiber_type = [fiber_type] else: emsg = 'fiber_type="{0}" not understood' WLOG(p, 'error', emsg.format(fiber_type)) # set fiber type p['FIB_TYPE'] = fiber_type p.set_source('FIB_TYPE', __NAME__ + '__main__()') # Overwrite keys from source for kwarg in kwargs: p[kwarg] = kwargs[kwarg] # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add') # ---------------------------------------------------------------------- # fix for un-preprocessed files # ---------------------------------------------------------------------- data = spirouImage.FixNonPreProcess(p, data) # ---------------------------------------------------------------------- # Get basic image properties # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # now change the value of sigdet if require if p['IC_EXT_SIGDET'] > 0: p['SIGDET'] = float(p['IC_EXT_SIGDET']) # get DPRTYPE from header (Will have it if valid) p = spirouImage.ReadParam(p, hdr, 'KW_DPRTYPE', required=False, dtype=str) # check the DPRTYPE is not None if (p['DPRTYPE'] == 'None') or (['DPRTYPE'] is None): emsg1 = 'Error: {0} is not set in header for file {1}' eargs = [p['KW_DPRTYPE'][0], p['FITSFILENAME']] emsg2 = '\tPlease run pre-processing on file.' emsg3 = ('\tIf pre-processing fails or skips file, file is not ' 'currrently as valid DRS fits file.') WLOG(p, 'error', [emsg1.format(*eargs), emsg2, emsg3]) else: p['DPRTYPE'] = p['DPRTYPE'].strip() # ---------------------------------------------------------------------- # Correction of DARK # ---------------------------------------------------------------------- p, datac = spirouImage.CorrectForDark(p, data, hdr) # ---------------------------------------------------------------------- # Resize image # ---------------------------------------------------------------------- # rotate the image and convert from ADU/s to ADU data = spirouImage.ConvertToADU(spirouImage.FlipImage(p, datac), p=p) # convert NaN to zeros data0 = np.where(~np.isfinite(data), np.zeros_like(data), data) # resize image bkwargs = dict(xlow=p['IC_CCDX_LOW'], xhigh=p['IC_CCDX_HIGH'], ylow=p['IC_CCDY_LOW'], yhigh=p['IC_CCDY_HIGH'], getshape=False) data1 = spirouImage.ResizeImage(p, data0, **bkwargs) # log change in data size wmsg = 'Image format changed to {1}x{0}' WLOG(p, '', wmsg.format(*data1.shape)) # ---------------------------------------------------------------------- # Correct for the BADPIX mask (set all bad pixels to zero) # ---------------------------------------------------------------------- p, data1 = spirouImage.CorrectForBadPix(p, data1, hdr) # ---------------------------------------------------------------------- # Log the number of dead pixels # ---------------------------------------------------------------------- # get the number of bad pixels n_bad_pix = np.sum(~np.isfinite(data1)) n_bad_pix_frac = n_bad_pix * 100 / np.product(data1.shape) # Log number wmsg = 'Nb dead pixels = {0} / {1:.4f} %' WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac)) # ---------------------------------------------------------------------- # Get the miny, maxy and max_signal for the central column # ---------------------------------------------------------------------- # get the central column y = data1[p['IC_CENT_COL'], :] # get the min max and max signal using box smoothed approach miny, maxy, max_signal, diff_maxmin = spirouBACK.MeasureMinMaxSignal(p, y) # Log max average flux/pixel wmsg = 'Maximum average flux/pixel in the spectrum: {0:.1f} [ADU]' WLOG(p, 'info', wmsg.format(max_signal / p['NBFRAMES'])) # ---------------------------------------------------------------------- # Background computation # ---------------------------------------------------------------------- if p['IC_DO_BKGR_SUBTRACTION']: # log that we are doing background measurement WLOG(p, '', 'Doing background measurement on raw frame') # get the bkgr measurement bargs = [p, data1, hdr] # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs) p, background = spirouBACK.MeasureBackgroundMap(*bargs) else: background = np.zeros_like(data1) p['BKGRDFILE'] = 'None' p.set_source('BKGRDFILE', __NAME__ + '.main()') # apply background correction to data (and set to zero where negative) data1 = data1 - background # ---------------------------------------------------------------------- # Read tilt slit angle # ---------------------------------------------------------------------- # define loc storage parameter dictionary loc = ParamDict() # get tilts (if the mode requires it) if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES: p, loc['TILT'] = spirouImage.ReadTiltFile(p, hdr) loc.set_source('TILT', __NAME__ + '/main() + /spirouImage.ReadTiltFile') else: loc['TILT'] = None loc.set_source('TILT', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Earth Velocity calculation # ---------------------------------------------------------------------- if p['IC_IMAGE_TYPE'] == 'H4RG': p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr) # ---------------------------------------------------------------------- # Get all fiber data (for all fibers) # ---------------------------------------------------------------------- # TODO: This is temp solution for options 5a and 5b loc_fibers = spirouLOCOR.GetFiberData(p, hdr) # ------------------------------------------------------------------ # Deal with debananafication # ------------------------------------------------------------------ # if mode 4a or 4b we need to straighten in x only if p['IC_EXTRACT_TYPE'] in ['4a', '4b']: # get the shape parameters p, shapem_x = spirouImage.GetShapeX(p, hdr) p, shape_local = spirouImage.GetShapeLocal(p, hdr) # log progress WLOG(p, '', 'Debananafying (straightening) image') # apply shape transforms targs = dict(lin_transform_vect=shape_local, dxmap=shapem_x) data2 = spirouImage.EATransform(data1, **targs) # if mode 5a or 5b we need to straighten in x and y using the # polynomial fits for location elif p['IC_EXTRACT_TYPE'] in ['5a', '5b']: # get the shape parameters p, shapem_x = spirouImage.GetShapeX(p, hdr) p, shapem_y = spirouImage.GetShapeY(p, hdr) p, shape_local = spirouImage.GetShapeLocal(p, hdr) p, fpmaster = spirouImage.GetFPMaster(p, hdr) # get the bad pixel map bkwargs = dict(return_map=True, quiet=True) p, badpix = spirouImage.CorrectForBadPix(p, data1, hdr, **bkwargs) # log progress WLOG(p, '', 'Cleaning image') # clean the image data1 = spirouEXTOR.CleanHotpix(data1, badpix) # log progress WLOG(p, '', 'Debananafying (straightening) image') # apply shape transforms targs = dict(lin_transform_vect=shape_local, dxmap=shapem_x, dymap=shapem_y) data2 = spirouImage.EATransform(data1, **targs) # in any other mode we do not straighten else: data2 = np.array(data1) # ---------------------------------------------------------------------- # Fiber loop # ---------------------------------------------------------------------- # loop around fiber types for fiber in p['FIB_TYPE']: # set fiber p['FIBER'] = fiber p.set_source('FIBER', __NAME__ + '/main()()') # ------------------------------------------------------------------ # Read wavelength solution # ------------------------------------------------------------------ # set source of wave file wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution' # Force A and B to AB solution if fiber in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = fiber # get wave image wkwargs = dict(hdr=hdr, return_wavemap=True, return_filename=True, return_header=True, fiber=wave_fiber) wout = spirouImage.GetWaveSolution(p, **wkwargs) loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'] = wout[:3] loc['WAVEHDR'], loc['WSOURCE'] = wout[3:] source_names = ['WAVE', 'WAVEFILE', 'WAVEPARAMS', 'WAVEHDR'] loc.set_sources(source_names, wsource) # get dates loc['WAVE_ACQTIMES'] = spirouDB.GetTimes(p, loc['WAVEHDR']) loc.set_source('WAVE_ACQTIMES', __NAME__ + '.main()') # get the recipe that produced the wave solution if 'WAVECODE' in loc['WAVEHDR']: loc['WAVE_CODE'] = loc['WAVEHDR']['WAVECODE'] else: loc['WAVE_CODE'] = 'UNKNOWN' loc.set_source('WAVE_CODE', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Get WFP keys # ---------------------------------------------------------------------- # Read the WFP keys - if they don't exist set to None and deal # with later p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_DRIFT', name='WFP_DRIFT', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_FWHM', name='WFP_FWHM', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_CONTRAST', name='WFP_CONTRAST', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_MAXCPP', name='WFP_MAXCPP', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_MASK', name='WFP_MASK', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_LINES', name='WFP_LINES', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_TARG_RV', name='WFP_TARG_RV', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_WIDTH', name='WFP_WIDTH', required=False) p = spirouImage.ReadParam(p, loc['WAVEHDR'], 'KW_WFP_STEP', name='WFP_STEP', required=False) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- fout = spirouImage.ReadFlatFile(p, hdr, return_header=True) p, loc['FLAT'], flathdr = fout loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get flat extraction mode if p['KW_E2DS_EXTM'][0] in flathdr: flat_ext_mode = flathdr[p['KW_E2DS_EXTM'][0]] else: flat_ext_mode = None # ------------------------------------------------------------------ # Check extraction method is same as flat extraction method # ------------------------------------------------------------------ # get extraction method and function extmethod, extfunc = spirouEXTOR.GetExtMethod(p, p['IC_EXTRACT_TYPE']) if not DEBUG: # compare flat extraction mode to extraction mode spirouEXTOR.CompareExtMethod(p, flat_ext_mode, extmethod, 'FLAT', 'EXTRACTION') # ------------------------------------------------------------------ # Read Blaze file # ------------------------------------------------------------------ p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr) blazesource = __NAME__ + '/main() + /spirouImage.ReadBlazeFile' loc.set_source('BLAZE', blazesource) # ------------------------------------------------------------------ # Get fiber specific parameters from loc_fibers # ------------------------------------------------------------------ # get this fibers parameters p = spirouImage.FiberParams(p, p['FIBER'], merge=True) # get localisation parameters for key in loc_fibers[fiber]: loc[key] = loc_fibers[fiber][key] loc.set_source(key, loc_fibers[fiber].sources[key]) # get locofile source p['LOCOFILE'] = loc['LOCOFILE'] p.set_source('LOCOFILE', loc.sources['LOCOFILE']) # get the order_profile order_profile = loc_fibers[fiber]['ORDER_PROFILE'] # ------------------------------------------------------------------ # Set up Extract storage # ------------------------------------------------------------------ # Create array to store extraction (for each order and each pixel # along order) loc['E2DS'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) loc['E2DSFF'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) loc['E2DSLL'] = [] loc['SPE1'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) loc['SPE3'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) loc['SPE4'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) loc['SPE5'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1])) # Create array to store the signal to noise ratios for each order loc['SNR'] = np.zeros(loc['NUMBER_ORDERS']) # ------------------------------------------------------------------ # Extract orders # ------------------------------------------------------------------ # source for parameter dictionary source = __NAME__ + '/main()' # get limits of order extraction valid_orders = spirouEXTOR.GetValidOrders(p, loc) # loop around each order for order_num in valid_orders: # ------------------------------------------------------------- # IC_EXTRACT_TYPE decides the extraction routine # ------------------------------------------------------------- eargs = [p, loc, data2, order_num] ekwargs = dict(mode=p['IC_EXTRACT_TYPE'], order_profile=order_profile) with warnings.catch_warnings(record=True) as w: eout = spirouEXTOR.Extraction(*eargs, **ekwargs) # deal with different return if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES: e2ds, e2dsll, cpt = eout else: e2ds, cpt = eout e2dsll = None # ------------------------------------------------------------- # calculate the noise range1, range2 = p['IC_EXT_RANGE1'], p['IC_EXT_RANGE2'] # set the noise noise = p['SIGDET'] * np.sqrt(range1 + range2) # get window size blaze_win1 = int(data2.shape[0] / 2) - p['IC_EXTFBLAZ'] blaze_win2 = int(data2.shape[0] / 2) + p['IC_EXTFBLAZ'] # get average flux per pixel flux = np.nansum( e2ds[blaze_win1:blaze_win2]) / (2 * p['IC_EXTFBLAZ']) # calculate signal to noise ratio = flux/sqrt(flux + noise^2) snr = flux / np.sqrt(flux + noise**2) # log the SNR RMS wmsg = 'On fiber {0} order {1}: S/N= {2:.1f} Nbcosmic= {3}' wargs = [p['FIBER'], order_num, snr, cpt] WLOG(p, '', wmsg.format(*wargs)) # add calculations to storage loc['E2DS'][order_num] = e2ds loc['E2DSFF'][order_num] = e2ds / loc['FLAT'][order_num] loc['SNR'][order_num] = snr # save the longfile if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES: loc['E2DSLL'].append(e2dsll) # set sources loc.set_sources(['e2ds', 'SNR'], source) # Log if saturation level reached satvalue = (flux / p['GAIN']) / (range1 + range2) if satvalue > (p['QC_LOC_FLUMAX'] * p['NBFRAMES']): wmsg = 'SATURATION LEVEL REACHED on Fiber {0} order={1}' WLOG(p, 'warning', wmsg.format(fiber, order_num)) # ------------------------------------------------------------------ # Thermal correction # ------------------------------------------------------------------ # get fiber type if fiber in ['AB', 'A', 'B']: fibertype = p['DPRTYPE'].split('_')[0] else: fibertype = p['DPRTYPE'].split('_')[1] # apply thermal correction based on fiber type if fibertype in p['THERMAL_CORRECTION_TYPE1']: # log progress wmsg = 'Correcting thermal background for {0}={1} mode={2}' wargs = [fiber, fibertype, 1] WLOG(p, 'info', wmsg.format(*wargs)) # correct E2DS tkwargs = dict(image=loc['E2DS'], mode=1, fiber=fiber, hdr=hdr) p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs) # correct E2DSFF tkwargs = dict(image=loc['E2DSFF'], mode=1, fiber=fiber, hdr=hdr, flat=loc['FLAT']) p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs) elif fibertype in p['THERMAL_CORRECTION_TYPE2']: # log progress wmsg = 'Correcting thermal background for {0}={1} mode={2}' wargs = [fiber, fibertype, 2] WLOG(p, 'info', wmsg.format(*wargs)) # correct E2DS tkwargs = dict(image=loc['E2DS'], mode=2, fiber=fiber, hdr=hdr) p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs) # correct E2DSFF tkwargs = dict(image=loc['E2DSFF'], mode=2, fiber=fiber, hdr=hdr, flat=loc['FLAT']) p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs) else: # log progress wmsg = 'Not correcting thermal background for {0}={1}' wargs = [fiber, fibertype] WLOG(p, 'info', wmsg.format(*wargs)) # set filename for output outfile = 'THERMALFILE_{0}'.format(fiber) p[outfile] = 'None' p.set_source(outfile, __NAME__ + '.main()') # ------------------------------------------------------------------ # Plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot all orders or one order if p['IC_FF_PLOT_ALL_ORDERS']: # plot image with all order fits (slower) sPlt.ext_aorder_fit(p, loc, data1, max_signal / 10.) else: # plot image with selected order fit and edge fit (faster) sPlt.ext_sorder_fit(p, loc, data1, max_signal / 10.) # plot e2ds against wavelength sPlt.ext_spectral_order_plot(p, loc) if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES: sPlt.ext_debanana_plot(p, loc, data2, max_signal / 10.) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # if array is completely NaNs it shouldn't pass if np.sum(np.isfinite(loc['E2DS'])) == 0: fail_msg.append('E2DS image is all NaNs') passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append('NaN') qc_names.append('image') qc_logic.append('image is all NaN') # ---------------------------------------------------------------------- # saturation check: check that the max_signal is lower than # qc_max_signal max_qcflux = p['QC_MAX_SIGNAL'] * p['NBFRAMES'] if max_signal > max_qcflux: fmsg = 'Too much flux in the image ({0:.2f} > {1:.2f})' fail_msg.append(fmsg.format(max_signal, max_qcflux)) passed = False # Question: Why is this test ignored? # For some reason this test is ignored in old code passed = True WLOG(p, 'info', fail_msg[-1]) qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(max_signal) qc_names.append('max_signal') qc_logic.append('QC_MAX_SIGNAL > {0:.3f}'.format(max_qcflux)) # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # Store extraction in file(s) # ------------------------------------------------------------------ raw_ext_file = os.path.basename(p['FITSFILENAME']) # construct filename e2dsfits, tag1 = spirouConfig.Constants.EXTRACT_E2DS_FILE(p) e2dsfitsname = os.path.split(e2dsfits)[-1] e2dsfffits, tag2 = spirouConfig.Constants.EXTRACT_E2DSFF_FILE(p) e2dsfffitsname = os.path.split(e2dsfffits)[-1] e2dsllfits, tag4 = spirouConfig.Constants.EXTRACT_E2DSLL_FILE(p) e2dsfllitsname = os.path.split(e2dsllfits)[-1] # log that we are saving E2DS spectrum wmsg = 'Saving E2DS spectrum of Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], e2dsfitsname)) wmsg = 'Saving E2DSFF spectrum of Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], e2dsfffitsname)) # add keys from original header file hdict = spirouImage.CopyOriginalKeys(hdr) # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_FIBER'], value=p['FIBER']) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBACK'], value=p['BKGRDFILE']) if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES: hdict = spirouImage.AddKey(p, hdict, p['KW_CDBTILT'], value=p['TILTFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES: hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEX'], value=p['SHAPEXFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEY'], value=p['SHAPEYFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPE'], value=p['SHAPEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFPMASTER'], value=p['FPMASTERFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBTHERMAL'], value=p['THERMALFILE_{0}'.format(fiber)]) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file', values=p['ARG_FILE_NAMES']) # construct loco filename locofile, _ = spirouConfig.Constants.EXTRACT_LOCO_FILE(p) locofilename = os.path.basename(locofile) # add barycentric keys to header hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV']) hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD']) hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_MAX'], value=loc['BERV_MAX']) hdict = spirouImage.AddKey(p, hdict, p['KW_B_OBS_HOUR'], value=loc['BERVHOUR']) # add barycentric estimate keys to header hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_EST'], value=loc['BERV_EST']) hdict = spirouImage.AddKey(p, hdict, p['KW_BJD_EST'], value=loc['BJD_EST']) hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_MAX_EST'], value=loc['BERV_MAX_EST']) hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_SOURCE'], value=loc['BERV_SOURCE']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # copy extraction method and function to header # (for reproducibility) hdict = spirouImage.AddKey(p, hdict, p['KW_E2DS_EXTM'], value=extmethod) hdict = spirouImage.AddKey(p, hdict, p['KW_E2DS_FUNC'], value=extfunc) # add localization file name to header hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_FILE'], value=locofilename) # add wave solution date hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'], value=loc['WAVE_ACQTIMES'][0]) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'], value=loc['WAVE_ACQTIMES'][1]) # add wave solution number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['WAVEPARAMS'].shape[0]) # add wave solution degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['WAVEPARAMS'].shape[1] - 1) # ------------------------------------------------------------------------- # add keys of the wave solution FP CCF hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FILE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_DRIFT'], value=p['WFP_DRIFT']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=p['WFP_FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_CONTRAST'], value=p['WFP_CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MAXCPP'], value=p['WFP_MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['WFP_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_LINES'], value=p['WFP_LINES']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_TARG_RV'], value=p['WFP_TARG_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_WIDTH'], value=p['WFP_WIDTH']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['WFP_STEP']) # write 1D list of the SNR hdict = spirouImage.AddKey1DList(p, hdict, p['KW_E2DS_SNR'], values=loc['SNR']) # add localization file keys to header root = p['KW_ROOT_DRS_LOC'][0] hdict = spirouImage.CopyRootKeys(p, hdict, locofile, root=root) # add wave solution coefficients hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['WAVEPARAMS']) # Save E2DS file hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) p = spirouImage.WriteImage(p, e2dsfits, loc['E2DS'], hdict) # Save E2DSFF file hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) p = spirouImage.WriteImage(p, e2dsfffits, loc['E2DSFF'], hdict) # Save E2DSLL file hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES: llstack = np.vstack(loc['E2DSLL']) p = spirouImage.WriteImage(p, e2dsllfits, llstack, hdict) # ------------------------------------------------------------------ # 1-dimension spectral S1D (uniform in wavelength) # ------------------------------------------------------------------ # get arguments for E2DS to S1D e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']] # get 1D spectrum xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave') # Plot the 1D spectrum if p['DRS_PLOT'] > 0: sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1) # construct file name s1dfile1, tag3 = spirouConfig.Constants.EXTRACT_S1D_FILE1(p) s1dfilename1 = os.path.basename(s1dfile1) # add header keys # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) # log writing to file wmsg = 'Saving 1D spectrum (uniform in wavelength) for Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename1)) # Write to file columns = ['wavelength', 'flux', 'eflux'] values = [xs1d1, ys1d1, np.zeros_like(ys1d1)] units = ['nm', None, None] s1d1 = spirouImage.MakeTable(p, columns, values, units=units) spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict) # ------------------------------------------------------------------ # 1-dimension spectral S1D (uniform in velocity) # ------------------------------------------------------------------ # get arguments for E2DS to S1D e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']] # get 1D spectrum xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity') # Plot the 1D spectrum if p['DRS_PLOT'] > 0: sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2) # construct file name s1dfile2, tag4 = spirouConfig.Constants.EXTRACT_S1D_FILE2(p) s1dfilename2 = os.path.basename(s1dfile2) # add header keys hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) # log writing to file wmsg = 'Saving 1D spectrum (uniform in velocity) for Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename2)) # Write to file columns = ['wavelength', 'flux', 'eflux'] values = [xs1d2, ys1d2, np.zeros_like(ys1d2)] units = ['nm', None, None] s1d2 = spirouImage.MakeTable(p, columns, values, units=units) spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, quiet=False): # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) p = spirouStartup.LoadArguments(p, night_name, mainfitsdir='reduced') # check that we have a night_name if p['ARG_NIGHT_NAME'] == '': # get available night_names nightnames = spirouStartup.GetNightDirs(p) emsgs = [ 'Must define night name. Input should be:', '\t >> {0} [NIGHT_NAME]'.format(__NAME__), ' ', 'Some available NIGHT_NAMES are as follows:' ] # loop around night names and add to message for nightname in nightnames: emsgs.append('\t {0}'.format(nightname)) # log message WLOG(p, 'error', emsgs) # ---------------------------------------------------------------------- # Check if we have an index file # ---------------------------------------------------------------------- # get expected index file name and location index_file = spirouConfig.Constants.INDEX_OUTPUT_FILENAME() path = p['ARG_FILE_DIR'] index_path = os.path.join(path, index_file) # get expected columns columns = spirouConfig.Constants.REDUC_OUTPUT_COLUMNS(p) # create storage loc = OrderedDict() # if file exists then we have some indexed files if os.path.exists(index_path): rawloc = spirouImage.ReadFitsTable(p, index_path) loc['FILENAME'] = list(rawloc['FILENAME']) loc['LAST_MODIFIED'] = list(rawloc['LAST_MODIFIED']) for col in columns: loc[col] = list(rawloc[col]) # else we have to create this file else: loc['FILENAME'] = [] loc['LAST_MODIFIED'] = [] # loop around columns and add blank list to each for col in columns: loc[col] = [] # ---------------------------------------------------------------------- # Get all files in raw night_name directory # ---------------------------------------------------------------------- # get all files in DRS_DATA_RAW/ARG_NIGHT_NAME files = os.listdir(p['ARG_FILE_DIR']) # sort file by name files = np.sort(files) # ---------------------------------------------------------------------- # Loop around all files and extract required header keys # ---------------------------------------------------------------------- # log progress WLOG(p, '', 'Analysing {0} files'.format(len(files))) # loop around files and extract properties for filename in files: # skip any non-fits file files if '.fits' not in filename: continue # skip the index file if filename == os.path.basename(index_file): continue # if already in loc['FILENAME'] then skip if filename in loc['FILENAME']: continue # construct absolute path for file fitsfilename = os.path.join(p['ARG_FILE_DIR'], filename) # read file header hdr = spirouImage.ReadHeader(p, filepath=fitsfilename) # add filename loc['FILENAME'].append(filename) loc['LAST_MODIFIED'].append(os.path.getmtime(fitsfilename)) # loop around columns and look for key in header for col in columns: # get value from header if col in hdr: value = str(hdr[col]) else: value = '--' # push into loc loc[col].append(value) # Make sure we have some files if len(loc['FILENAME']) == 0: wmsg = 'No pre-processed (*{0}) files present.' WLOG(p, 'warning', wmsg.format(p['PROCESSED_SUFFIX'])) # ---------------------------------------------------------------------- # archive to table # ---------------------------------------------------------------------- if len(loc['FILENAME']) != 0: # construct table filename outfile = spirouConfig.Constants.OFF_LISTING_REDUC_FILE(p) # log progress WLOG(p, '', 'Creating ascii file for listing.') # get column names colnames = ['FILENAME', 'LAST_MODIFIED'] + list(columns) # define the format for each column formats = [None] * len(colnames) # get the values for each column values = [] for col in colnames: values.append(loc[col]) # construct astropy table from column names, values and formats table = spirouImage.MakeTable(p, colnames, values, formats) # save table to file spirouImage.WriteTable(p, table, outfile, fmt='ascii.rst') # log saving of file if not quiet: wmsg = 'Listing of directory on file {0}' WLOG(p, '', wmsg.format(outfile)) # print out to screen WLOG(p, '', '') WLOG(p, '', 'Listing table:') WLOG(p, '', '') spirouImage.PrintTable(p, table) # ---------------------------------------------------------------------- # Update Index # ---------------------------------------------------------------------- spirouStartup.SortSaveOutputs(p, loc, index_path) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p, outputs=None) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, reffile=None): """ cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_DRIFT_E2DS_spirou.py [night_directory] [reffile] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param reffile: string, the reference file to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with reference file being None (i.e. get from sys.argv) if reffile is None: customargs = spirouStartup.GetCustomFromRuntime( p, [0], [str], ['reffile']) else: customargs = dict(reffile=reffile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='reffile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE']) p['REFFILENAME'] = reffilename p.set_source('REFFILENAME', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename) # add to loc loc = ParamDict() loc['SPEREF'] = speref loc['NUMBER_ORDERS'] = nbo loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # manually set OBJNAME to FP p['OBJNAME'] = 'FP' # ---------------------------------------------------------------------- # Earth Velocity calculation # ---------------------------------------------------------------------- if p['IC_IMAGE_TYPE'] == 'H4RG': p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr) # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # # get wave image # wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber, # return_wavemap=True) # _, loc['WAVE'] = wout # loc.set_source('WAVE', __NAME__+'/main() + /spirouImage.GetWaveSolution') # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) param_ll, wave_ll, wavefile, wsource = wout # save to storage loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()' loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # get flat p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # ---------------------------------------------------------------------- # Background correction # ---------------------------------------------------------------------- # log that we are performing background correction if p['IC_DRIFT_BACK_CORR']: WLOG(p, '', 'Perform background correction') # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num], bsize) loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny # ---------------------------------------------------------------------- # Preliminary set up = no flat, no blaze # ---------------------------------------------------------------------- # reset flat to all ones # loc['FLAT'] = np.ones((nbo, nx)) # set blaze to all ones (if not bug in correlbin !!! # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((nbo, nx)) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_sources(['blaze'], __NAME__ + '/main()') # ------------------------------------------------------------------ # Compute photon noise uncertainty for reference file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPEREF'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) # ------------------------------------------------------------------ # Reference plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order # sPlt.drift_plot_selected_wave_ref(p, loc) # plot photon noise uncertainty sPlt.drift_plot_photon_uncertainty(p, loc) # ---------------------------------------------------------------------- # Get template RV (from ccf_mask) # ---------------------------------------------------------------------- # Use CCF Mask function with drift constants p['CCF_MASK'] = p['DRIFT_CCF_MASK'] p['TARGET_RV'] = p['DRIFT_TARGET_RV'] p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH'] p['CCF_STEP'] = p['DRIFT_CCF_STEP'] # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # check and deal with mask in microns (should be in nm) if np.mean(loc['LL_MASK_CTR']) < 2.0: loc['LL_MASK_CTR'] *= 1000.0 loc['LL_MASK_D'] *= 1000.0 # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = np.array(loc['SPEREF']) loc.set_source('E2DSFF', __NAME__ + '/main()') p['CCF_FIT_TYPE'] = 1 # run the RV coravelation function with these parameters loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # ---------------------------------------------------------------------- # set the source keys = [ 'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # get the reference RV in m/s rvref = loc['RV'] * 1000. # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # ------------------------------------------------------------------ # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from # ref file # ------------------------------------------------------------------ # get files listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr) # get the number of files nfiles = len(listfiles) # Log the number of files found wmsgs = [ 'Number of files found on directory = {0}'.format(nfiles), '\tExtensions allowed:' ] for listtype in listtypes: wmsgs.append('\t\t - {0}'.format(listtype)) WLOG(p, 'info', wmsgs) # ------------------------------------------------------------------ # Set up Extract storage for all files # ------------------------------------------------------------------ # decide whether we need to skip (for large number of files) if len(listfiles) >= p['DRIFT_NLARGE']: skip = p['DRIFT_E2DS_FILE_SKIP'] nfiles = int(nfiles / skip) else: skip = 1 # set up storage loc['MDRIFT'] = np.zeros(nfiles) loc['MERRDRIFT'] = np.zeros(nfiles) loc['DELTATIME'] = np.zeros(nfiles) loc['FLUXRATIO'] = np.zeros(nfiles) # set loc sources keys = ['mdrift', 'merrdrift', 'deltatime'] loc.set_sources(keys, __NAME__ + '/main()()') # ------------------------------------------------------------------ # Loop around all files: correct for dark, reshape, extract and # calculate dvrms and meanpond # ------------------------------------------------------------------ wref = 1 for i_it in range(nfiles): # get file for this iteration fpfile = listfiles[::skip][i_it] # Log the file we are reading wmsg = 'Reading file {0}' WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1])) # ------------------------------------------------------------------ # read e2ds files and get timestamp # ------------------------------------------------------------------ # read data rout = spirouImage.ReadData(p, filename=fpfile, log=False) loc['SPE'], hdri, nxi, nyi = rout # get acqtime bjdspe = spirouImage.GetAcqTime(p, hdri, name='acqtime', return_value=1, kind='julian') # test whether we want to subtract background if p['IC_DRIFT_BACK_CORR']: # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Measurethe min and max flux miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num], bsize) # subtract off the background (miny) loc['SPE'][order_num] = loc['SPE'][order_num] - miny # ------------------------------------------------------------------ # calculate flux ratio # ------------------------------------------------------------------ sorder = p['IC_DRIFT_ORDER_PLOT'] fratio = np.nansum(loc['SPE'][sorder]) / np.nansum( loc['SPEREF'][sorder]) loc['FLUXRATIO'][i_it] = fratio # ------------------------------------------------------------------ # Compute photon noise uncertainty for reference file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPE'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsspe, wmeanspe = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = loc['SPE'] * 1. loc.set_source('E2DSFF', __NAME__ + '/main()') loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) # calculate the mean RV meanrv = ccf_res[1] * 1000. - rvref # ------------------------------------------------------------------ # Calculate delta time # ------------------------------------------------------------------ # calculate the time from reference (in hours) deltatime = (bjdspe - bjdref) * 24 err_meanrv = np.sqrt(dvrmsref + dvrmsspe) merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2)) # Log the RV properties wmsg = ('Time from ref= {0:.2f} h ' '- Flux Ratio= {1:.2f} ' '- Drift mean= {2:.2f} +- ' '{3:.2f} m/s') wargs = [deltatime, loc['FLUXRATIO'][i_it], meanrv, merr] WLOG(p, '', wmsg.format(*wargs)) # add this iteration to storage loc['MDRIFT'][i_it] = meanrv loc['MERRDRIFT'][i_it] = merr loc['DELTATIME'][i_it] = deltatime # ------------------------------------------------------------------ # set source loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()') # ------------------------------------------------------------------ # peak to peak drift driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT']) driftrms = np.std(loc['MDRIFT']) # log th etotal drift peak-to-peak and rms wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in ' '{2:.2f} hour') wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])] WLOG(p, '', wmsg.format(*wargs)) # ------------------------------------------------------------------ # Plot of mean drift # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot delta time against median drift sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds') # ------------------------------------------------------------------ # Save drift values to file # ------------------------------------------------------------------ # # get raw input file name # raw_infile = os.path.basename(p['REFFILE']) # # construct filename # driftfits, tag = spirouConfig.Constants.DRIFTCCF_E2DS_FITS_FILE(p) # driftfitsname = os.path.split(driftfits)[-1] # # log that we are saving drift values # wmsg = 'Saving drift values of Fiber {0} in {1}' # WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname)) # # add keys from original header file # hdict = spirouImage.CopyOriginalKeys(hdr) # # add the reference RV # hdict = spirouImage.AddKey(p, hdict, p['KW_REF_RV'], value=rvref) # # # set the version # hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) # hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # # set the input files # hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) # hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile) # # save drift values # p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict) # ------------------------------------------------------------------ # print .tbl result # ------------------------------------------------------------------ # construct filename drifttbl = spirouConfig.Constants.DRIFTCCF_E2DS_TBL_FILE(p) drifttblname = os.path.split(drifttbl)[-1] # construct and write table columnnames = ['time', 'drift', 'drifterr'] columnformats = ['7.4f', '6.2f', '6.3f'] columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']] table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table wmsg = 'Average Drift saved in {0} Saved ' WLOG(p, '', wmsg.format(drifttblname)) spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst') # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None): """ cal_WAVE_E2DS.py main function, if night_name and files are None uses arguments from run time i.e.: cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param fpfile: string, or None, the FP file to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :param hcfiles: string, list or None, the list of HC files to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # test files TC2 # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/' # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits' # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits'] # test files TC3 # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/' # fpfile = '2294108a_pp_e2dsff_AB.fits' # hcfiles = ['2294115c_pp_e2dsff_AB.fits'] # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/' # fpfile = '2294223a_pp_e2dsff_AB.fits' # hcfiles = ['2294230c_pp_e2dsff_AB.fits'] # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) if hcfiles is None or fpfile is None: names, types = ['fpfile', 'hcfiles'], [str, str] customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1], types, names, last_multi=True) else: customargs = dict(hcfiles=hcfiles, fpfile=fpfile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsdir='reduced', mainfitsfile='hcfiles') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE']) fiber1 = str(p['FIBER']) p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES']) fiber2 = str(p['FIBER']) # set the hcfilename to the first hcfilenames hcfitsfilename = hcfilenames[0] # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Have to check that the fibers match # ---------------------------------------------------------------------- if fiber1 == fiber2: p['FIBER'] = fiber1 fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()' p.set_source('FIBER', fsource) else: emsg = 'Fiber not matching for {0} and {1}, should be the same' eargs = [hcfitsfilename, fpfitsfilename] WLOG(p, 'error', emsg.format(*eargs)) # set the fiber type p['FIB_TYP'] = [p['FIBER']] p.set_source('FIB_TYP', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Read FP and HC files # ---------------------------------------------------------------------- # read and combine all HC files except the first (fpfitsfilename) rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]] p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs) # read first file (fpfitsfilename) fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename) # TODO: ------------------------------------------------------------ # TODO remove to test NaNs # TODO: ------------------------------------------------------------ # hcmask = np.isfinite(hcdata) # fpmask = np.isfinite(fpdata) # hcdata[~hcmask] = 0.0 # fpdata[~fpmask] = 0.0 # TODO: ------------------------------------------------------------ # add data and hdr to loc loc = ParamDict() loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr # set the source sources = ['HCDATA', 'HCHDR'] loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()') sources = ['FPDATA', 'FPHDR'] loc.set_sources(sources, 'spirouImage.ReadImage()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hchdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hchdr, name='exptime') # get gain p = spirouImage.GetGain(p, hchdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # get lamp parameters p = spirouTHORCA.GetLampParams(p, hchdr) # get number of orders # we always get fibre A number because AB is doubled in constants file loc['NBO'] = p['QC_LOC_NBO_FPALL']['A'] loc.set_source('NBO', __NAME__ + '.main()') # get number of pixels in x from hcdata size loc['NBPIX'] = loc['HCDATA'].shape[1] loc.set_source('NBPIX', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Read blaze # ---------------------------------------------------------------------- # get tilts p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr) loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile') # make copy of blaze (as it's overwritten later) loc['BLAZE2'] = np.copy(loc['BLAZE']) # ---------------------------------------------------------------------- # Read wave solution # ---------------------------------------------------------------------- # wavelength file; we will use the polynomial terms in its header, # NOT the pixel values that would need to be interpolated # set source of wave file wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution' # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hchdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'], wsource) poly_wave_sol = loc['WAVEPARAMS'] # ---------------------------------------------------------------------- # Check that wave parameters are consistent with "ic_ll_degr_fit" # ---------------------------------------------------------------------- loc = spirouImage.CheckWaveSolConsistency(p, loc) # ---------------------------------------------------------------------- # Read UNe solution # ---------------------------------------------------------------------- wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p) loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne source = __NAME__ + '.main() + spirouImage.ReadLineList()' loc.set_sources(['ll_line', 'ampl_line'], source) # ---------------------------------------------------------------------- # Generate wave map from wave solution # ---------------------------------------------------------------------- loc = spirouWAVE.generate_wave_map(p, loc) # ---------------------------------------------------------------------- # Find Gaussian Peaks in HC spectrum # ---------------------------------------------------------------------- loc = spirouWAVE.find_hc_gauss_peaks(p, loc) # ---------------------------------------------------------------------- # Start plotting session # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # start interactive plot sPlt.start_interactive_session(p) # ---------------------------------------------------------------------- # Fit Gaussian peaks (in triplets) to # ---------------------------------------------------------------------- loc = spirouWAVE.fit_gaussian_triplets(p, loc) # ---------------------------------------------------------------------- # Generate Resolution map and line profiles # ---------------------------------------------------------------------- # log progress wmsg = 'Generating resolution map and ' # generate resolution map loc = spirouWAVE.generate_resolution_map(p, loc) # map line profile map if p['DRS_PLOT'] > 0: sPlt.wave_ea_plot_line_profiles(p, loc) # ---------------------------------------------------------------------- # End plotting session # ---------------------------------------------------------------------- # end interactive session if p['DRS_PLOT'] > 0: sPlt.end_interactive_session(p) # ---------------------------------------------------------------------- # Set up all_lines storage # ---------------------------------------------------------------------- # initialise up all_lines storage all_lines_1 = [] # get parameters from p n_ord_start = p['IC_HC_N_ORD_START_2'] n_ord_final = p['IC_HC_N_ORD_FINAL_2'] pixel_shift_inter = p['PIXEL_SHIFT_INTER'] pixel_shift_slope = p['PIXEL_SHIFT_SLOPE'] # get values from loc xgau = np.array(loc['XGAU_T']) dv = np.array(loc['DV_T']) fit_per_order = np.array(loc['POLY_WAVE_SOL']) ew = np.array(loc['EW_T']) peak = np.array(loc['PEAK_T']) amp_catalog = np.array(loc['AMP_CATALOG']) wave_catalog = np.array(loc['WAVE_CATALOG']) ord_t = np.array(loc['ORD_T']) # loop through orders for iord in range(n_ord_start, n_ord_final): # keep relevant lines # -> right order # -> finite dv gg = (ord_t == iord) & (np.isfinite(dv)) nlines = np.nansum(gg) # put lines into ALL_LINES structure # reminder: # gparams[0] = output wavelengths # gparams[1] = output sigma(gauss fit width) # gparams[2] = output amplitude(gauss fit) # gparams[3] = difference in input / output wavelength # gparams[4] = input amplitudes # gparams[5] = output pixel positions # gparams[6] = output pixel sigma width (gauss fit width in pixels) # gparams[7] = output weights for the pixel position chebval = np.polynomial.chebyshev.chebval # dummy array for weights test = np.ones(np.shape(xgau[gg]), 'd') * 1e4 # get the final wavelength value for each peak in order output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg]) # output_wave_1 = chebval(xgau[gg], fit_per_order[iord]) # convert the pixel equivalent width to wavelength units xgau_ew_ini = xgau[gg] - ew[gg] / 2 xgau_ew_fin = xgau[gg] + ew[gg] / 2 ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini) ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin) # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord]) # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord]) ew_ll = ew_ll_fin - ew_ll_ini # put all lines in the order into array gau_params = np.column_stack( (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1, amp_catalog[gg], xgau[gg], ew[gg], test)) # append the array for the order into a list all_lines_1.append(gau_params) # save dv in km/s and auxiliary order number # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/ # output_wave_1)) # ord_save = np.concatenate((ord_save, test*iord)) # add to loc loc['ALL_LINES_1'] = all_lines_1 loc['LL_PARAM_1'] = np.array(fit_per_order) loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2']) loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()') # For compatibility w/already defined functions, I need to save # here all_lines_2 all_lines_2 = list(all_lines_1) loc['ALL_LINES_2'] = all_lines_2 # loc['LL_PARAM_2'] = np.fliplr(fit_per_order) # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2']) # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()') # ------------------------------------------------------------------ # Littrow test # ------------------------------------------------------------------ start = p['IC_LITTROW_ORDER_INIT_1'] end = p['IC_LITTROW_ORDER_FINAL_1'] # calculate echelle orders o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # reset Littrow fit degree p['IC_LITTROW_FIT_DEG_1'] = 7 # Do Littrow check ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True) loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs) # Plot wave solution littrow check if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_check_plot(p, loc, iteration=1) # ------------------------------------------------------------------ # extrapolate Littrow solution # ------------------------------------------------------------------ ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1) loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs) # ------------------------------------------------------------------ # Plot littrow solution # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_extrap_plot(p, loc, iteration=1) # ------------------------------------------------------------------ # Incorporate FP into solution # ------------------------------------------------------------------ # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration) loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1']) loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1']) # only use FP if switched on in constants file if p['IC_WAVE_USE_FP']: # ------------------------------------------------------------------ # Find FP lines # ------------------------------------------------------------------ # print message to screen wmsg = 'Identification of lines in reference file: {0}' WLOG(p, '', wmsg.format(fpfile)) # ------------------------------------------------------------------ # Get the FP solution # ------------------------------------------------------------------ loc = spirouTHORCA.FPWaveSolutionNew(p, loc) # ------------------------------------------------------------------ # FP solution plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # Plot the FP extracted spectrum against wavelength solution sPlt.wave_plot_final_fp_order(p, loc, iteration=1) # Plot the measured FP cavity width offset against line number sPlt.wave_local_width_offset_plot(p, loc) # Plot the FP line wavelength residuals sPlt.wave_fp_wavelength_residuals(p, loc) # ------------------------------------------------------------------ # Create new wavelength solution # ------------------------------------------------------------------ # TODO: Melissa fault - fix later p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'], p['IC_FP_N_ORD_START']) p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'], p['IC_FP_N_ORD_FINAL']) start = p['IC_HC_N_ORD_START_2'] end = p['IC_HC_N_ORD_FINAL_2'] # recalculate echelle orders for Fit1DSolution o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # select the orders to fit lls = loc['LITTROW_EXTRAP_SOL_1'][start:end] loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2) # from here, LL_OUT_2 wil be 0-47 # ------------------------------------------------------------------ # Repeat Littrow test # ------------------------------------------------------------------ start = p['IC_LITTROW_ORDER_INIT_2'] end = p['IC_LITTROW_ORDER_FINAL_2'] # recalculate echelle orders for Littrow check o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # Do Littrow check ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True) loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs) # Plot wave solution littrow check if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_check_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # extrapolate Littrow solution # ------------------------------------------------------------------ ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2) loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs) # ------------------------------------------------------------------ # Plot littrow solution # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_extrap_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # Join 0-47 and 47-49 solutions # ------------------------------------------------------------------ loc = spirouTHORCA.JoinOrders(p, loc) # ------------------------------------------------------------------ # Plot single order, wavelength-calibrated, with found lines # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: sPlt.wave_ea_plot_single_order(p, loc) # ---------------------------------------------------------------------- # Do correlation on FP spectra # ---------------------------------------------------------------------- # ------------------------------------------------------------------ # Compute photon noise uncertainty for FP # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['FPDATA'], loc['LL_FINAL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) # Use CCF Mask function with drift constants p['CCF_MASK'] = p['DRIFT_CCF_MASK'] p['TARGET_RV'] = p['DRIFT_TARGET_RV'] p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH'] p['CCF_STEP'] = p['DRIFT_CCF_STEP'] p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH'] p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP'] # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX'])) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_source('blaze', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Do correlation on FP # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = np.array(loc['FPDATA']) loc.set_source('E2DSFF', __NAME__ + '/main()') p['CCF_FIT_TYPE'] = 1 loc['BERV'] = 0.0 loc['BERV_MAX'] = 0.0 loc['BJD'] = 0.0 # run the RV coravelation function with these parameters loc['WAVE_LL'] = np.array(loc['LL_FINAL']) loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL']) loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Update the Correlation stats with values using fiber C (FP) drift # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # set the source keys = [ 'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) p['OBJNAME'] = 'FP' sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # TODO : Add QC of the FP CCF # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # get parameters ffrom p p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX'] p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX'] # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']: fmsg = 'Sigma too high ({0:.5f} > {1:.5f})' fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX'])) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['SIG1']) qc_names.append('SIG1') qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX'])) # ---------------------------------------------------------------------- # check the difference between consecutive orders is always positive # get the differences wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1] if np.min(wave_diff) < 0: fmsg = 'Negative wavelength difference between orders' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.min(wave_diff)) qc_names.append('MIN WAVE DIFF') qc_logic.append('MIN WAVE DIFF < 0') # ---------------------------------------------------------------------- # check for infinites and NaNs in mean residuals from fit if ~np.isfinite(loc['X_MEAN_2']): # add failed message to the fail message list fmsg = 'NaN or Inf in X_MEAN_2' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['X_MEAN_2']) qc_names.append('X_MEAN_2') qc_logic.append('X_MEAN_2 not finite') # ---------------------------------------------------------------------- # iterate through Littrow test cut values lit_it = 2 # checks every other value # TODO: This QC check (or set of QC checks needs re-writing it is # TODO: nearly impossible to understand for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2): # get x cut point x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it] # get the sigma for this cut point sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it] # get the abs min and max dev littrow values min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it]) max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it]) # get the corresponding order min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it] max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it] # check if sig littrow is above maximum rms_littrow_max = p['QC_RMS_LITTROW_MAX'] dev_littrow_max = p['QC_DEV_LITTROW_MAX'] if sig_littrow > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f})') fargs = [x_cut_point, sig_littrow, rms_littrow_max] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(sig_littrow) qc_names.append('sig_littrow') qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max)) # ---------------------------------------------------------------------- # check if min/max littrow is out of bounds if np.max([max_littrow, min_littrow]) > dev_littrow_max: fmsg = ('Littrow test (x={0}) failed (min|max dev = ' '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})') fargs = [ x_cut_point, min_littrow, max_littrow, dev_littrow_max, min_littrow_ord, max_littrow_ord ] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) # TODO: Should this be the QC header values? # TODO: it does not change the outcome of QC (i.e. passed=False) # TODO: So what is the point? # if sig was out of bounds, recalculate if sig_littrow > rms_littrow_max: # conditions check1 = min_littrow > dev_littrow_max check2 = max_littrow > dev_littrow_max # get the residuals respix = loc['LITTROW_YY_' + str(lit_it)][x_it] # check if both are out of bounds if check1 and check2: # remove respective orders worst_order = (min_littrow_ord, max_littrow_ord) respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if min is out of bounds elif check1: # remove respective order worst_order = min_littrow_ord respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if max is out of bounds elif check2: # remove respective order worst_order = max_littrow_ord respix_2 = np.delete(respix, max_littrow_ord) redo_sigma = True # else do not recalculate sigma else: redo_sigma, respix_2, worst_order = False, None, None wmsg = 'No outlying orders, sig littrow not recalculated' fail_msg.append(wmsg.format()) # if outlying order, recalculate stats if redo_sigma: mean = np.nansum(respix_2) / len(respix_2) mean2 = np.nansum(respix_2**2) / len(respix_2) rms = np.sqrt(mean2 - mean**2) if rms > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] fail_msg.append(fmsg.format(*fargs)) else: wargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] wmsg = ('Littrow test (x={0}) passed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fail_msg.append(wmsg.format(*wargs)) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.max([max_littrow, min_littrow])) qc_names.append('max or min littrow') qc_logic.append('max or min littrow > {0:.2f}' ''.format(dev_littrow_max)) # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # archive result in e2ds spectra # ------------------------------------------------------------------ # get raw input file name(s) raw_infiles1 = [] for hcfile in p['HCFILES']: raw_infiles1.append(os.path.basename(hcfile)) raw_infile2 = os.path.basename(p['FPFILE']) # get wave filename wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p) wavefitsname = os.path.split(wavefits)[-1] # log progress wargs = [p['FIBER'], wavefits] wmsg = 'Write wavelength solution for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # write solution to fitsfilename header # copy original keys hdict = spirouImage.CopyOriginalKeys(loc['HCHDR']) # add version number hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='fpfile', values=p['FPFILE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE2'], dim1name='hcfile', values=p['HCFILES']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add wave solution date hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'], value=p['MAX_TIME_HUMAN']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'], value=p['MAX_TIME_UNIX']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__) # add number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['LL_PARAM_FINAL'].shape[0]) # add degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['LL_PARAM_FINAL'].shape[1] - 1) # add wave solution hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['LL_PARAM_FINAL']) # add FP CCF drift # target RV and width hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_TARG_RV'], value=p['TARGET_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_WIDTH'], value=p['CCF_WIDTH']) # the rv step # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1]) # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP']) # add ccf stats hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_DRIFT'], value=loc['CCF_RES'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_CONTRAST'], value=loc['CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MAXCPP'], value=loc['MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_LINES'], value=np.nansum(loc['TOT_LINE'])) # write the wave "spectrum" hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict) # get filename for E2DS calibDB copy of FITSFILENAME e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0] wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]] wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # make a copy of the E2DS file for the calibBD p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict) # only copy over if QC passed if p['QC']: # loop around hc files and update header with for hcfile in p['HCFILES']: raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1) # update fp file raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2) # ------------------------------------------------------------------ # Save to result table # ------------------------------------------------------------------ # calculate stats for table final_mean = 1000 * loc['X_MEAN_2'] final_var = 1000 * loc['X_VAR_2'] num_lines = int(np.nansum(loc['X_ITER_2'][:, 2])) # loc['X_ITER_2'] err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines) sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)]) # construct filename wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p) wavetblname = os.path.basename(wavetbl) # construct and write table columnnames = [ 'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err', 'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500', 'rms_L3000', 'rms_L3500' ] columnformats = [ '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}' ] columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]], [p['FIBER']], [final_mean], [final_var], [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]], [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]], [sig_littrow[5]], [sig_littrow[6]]] # make table table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # merge table wmsg = 'Global result summary saved in {0}' WLOG(p, '', wmsg.format(wavetblname)) spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst') # ---------------------------------------------------------------------- # Save resolution and line profiles to file # ---------------------------------------------------------------------- raw_infile = os.path.basename(p['FITSFILENAME']) # get wave filename resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p) resfitsname = os.path.basename(resfits) WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname)) # make a copy of the E2DS file for the calibBD # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3) # get res data in correct format resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict) # save to file p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts) # ------------------------------------------------------------------ # Save line list table file # ------------------------------------------------------------------ # construct filename # TODO proper column values wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p) wavelltblname = os.path.split(wavelltbl)[-1] # construct and write table columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx'] columnformats = [ '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}', '{:8.4f}' ] columnvalues = [] # construct column values (flatten over orders) for it in range(len(loc['X_DETAILS_2'])): for jt in range(len(loc['X_DETAILS_2'][it][0])): row = [ float(it), loc['X_DETAILS_2'][it][0][jt], loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt], loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt] ] columnvalues.append(row) # log saving wmsg = 'List of lines used saved in {0}' WLOG(p, '', wmsg.format(wavelltblname)) # make table columnvalues = np.array(columnvalues).T table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Move to calibDB and update calibDB # ------------------------------------------------------------------ if p['QC']: # set the wave key keydb = 'WAVE_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, wavefits) # update the master calib DB file with new key spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR']) # set the hcref key keydb = 'HCREF_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, e2dscopy_filename) # update the master calib DB file with new key e2dscopyfits = os.path.split(e2dscopy_filename)[-1] spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR']) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return p and loc return dict(locals())
def output_lsd_image(p, loc, hdict): """ Function to set up and save output FITS image to store LSD analyis. :param p: parameter dictionary, ParamDict containing constants :param loc: parameter dictionary, ParamDict to store data Must contain at least: loc['LSDDATA']: numpy array (2D), LSD analysis data :param hdict: dictionary, header dictionary of keywordstores each key is the HEADER key and each value is a list of two values: [HEADER value, HEADER comment] :return lsdfits, lsdfitsfitsname: lsdfits: string, output full path lsdfitsfitsname: string, output filename """ # construct file names lsdfits, tag = spirouConfig.Constants.LSD_POL_FILE(p, loc) lsdfitsfitsname = os.path.split(lsdfits)[-1] columns = ['velocities', 'stokesI', 'stokesI_model', 'stokesVQU', 'Null'] values = [loc['LSD_VELOCITIES'], loc['LSD_STOKESI'], loc['LSD_STOKESI_MODEL'], loc['LSD_STOKESVQU'], loc['LSD_NULL']] # save all data into a single array for output FITS loc['LSDDATA'] = [] loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_VELOCITIES']) loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI']) loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI_MODEL']) loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESVQU']) loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_NULL']) # add LSD parameters keywords to header # add input parameters for LSD analysis hdict = spirouImage.AddKey(p, hdict, p['KW_POL_STOKES'], value=loc['STOKES']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MASK'], value=loc['SELECTED_FILE_CCFLINES']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_V0'], value=p['IC_POLAR_LSD_V0']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_VF'], value=p['IC_POLAR_LSD_VF']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NP'], value=p['IC_POLAR_LSD_NP']) # add fitted values from gaussian fit to Stokes I LSD hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RV'], value=loc['LSD_FIT_RV']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RESOL'], value=loc['LSD_FIT_RESOL']) # add statistical quantities from LSD analysis hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEANPOL'], value=loc['LSD_POL_MEAN']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STDDEVPOL'], value=loc['LSD_POL_STDDEV']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDIANPOL'], value=loc['LSD_POL_MEDIAN']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDABSDEVPOL'], value=loc['LSD_POL_MEDABSDEV']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_MEAN'], value=loc['LSD_STOKESVQU_MEAN']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_STDDEV'], value=loc['LSD_STOKESVQU_STDDEV']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_MEAN'], value=loc['LSD_NULL_MEAN']) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_STDDEV'], value=loc['LSD_NULL_STDDEV']) # add information about the meaning of data columns hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL1'], value=p['IC_POLAR_LSD_DATAINFO'][0]) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL2'], value=p['IC_POLAR_LSD_DATAINFO'][1]) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL3'], value=p['IC_POLAR_LSD_DATAINFO'][2]) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL4'], value=p['IC_POLAR_LSD_DATAINFO'][3]) hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL5'], value=p['IC_POLAR_LSD_DATAINFO'][4]) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # Store LSD analysis data in FITS TABLE table = spirouImage.MakeTable(p, columns, values) spirouImage.WriteTable(p, table, lsdfits, fmt='fits', header=hdict) # deal with output onto index.fits p = spirouImage.spirouFITS.write_output_dict(p, lsdfits, hdict) # Store LSD analysis data in file #p = spirouImage.WriteImage(p, lsdfits, loc['LSDDATA'], hdict) # return p, lsdfits and lsdfitsname return p, lsdfits, lsdfitsfitsname
def main(night_name=None, reffile=None): """ cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_DRIFT_E2DS_spirou.py [night_directory] [reffile] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param reffile: string, the reference file to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with reference file being None (i.e. get from sys.argv) if reffile is None: customargs = spirouStartup.GetCustomFromRuntime( p, [0], [str], ['reffile']) else: customargs = dict(reffile=reffile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='reffile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE']) p['REFFILENAME'] = reffilename p.set_source('REFFILENAME', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename) # add to loc loc = ParamDict() loc['SPEREF'] = speref loc['NUMBER_ORDERS'] = nbo loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber, return_wavemap=True, return_filename=True) _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout source = __NAME__ + '/main() + /spirouImage.GetWaveSolution' loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # get flat p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # ---------------------------------------------------------------------- # Background correction # ---------------------------------------------------------------------- # log that we are performing background correction if p['IC_DRIFT_BACK_CORR']: WLOG(p, '', 'Perform background correction') # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num], bsize) loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny # ------------------------------------------------------------------ # Compute photon noise uncertainty for reference file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPEREF'], loc['WAVE']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) # ------------------------------------------------------------------ # Reference plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order sPlt.drift_plot_selected_wave_ref(p, loc) # plot photon noise uncertainty sPlt.drift_plot_photon_uncertainty(p, loc) # ------------------------------------------------------------------ # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from # ref file # ------------------------------------------------------------------ # get files listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr) # get the number of files nfiles = len(listfiles) # Log the number of files found wmsgs = [ 'Number of files found on directory = {0}'.format(nfiles), '\tExtensions allowed:' ] for listtype in listtypes: wmsgs.append('\t\t - {0}'.format(listtype)) WLOG(p, 'info', wmsgs) # ------------------------------------------------------------------ # Set up Extract storage for all files # ------------------------------------------------------------------ # decide whether we need to skip (for large number of files) if len(listfiles) >= p['DRIFT_NLARGE']: skip = p['DRIFT_E2DS_FILE_SKIP'] nfiles = int(nfiles / skip) else: skip = 1 # set up storage loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS'])) loc['DELTATIME'] = np.zeros(nfiles) # set loc sources keys = ['drift', 'errdrift', 'deltatime'] loc.set_sources(keys, __NAME__ + '/main()()') # ------------------------------------------------------------------ # Loop around all files: correct for dark, reshape, extract and # calculate dvrms and meanpond # ------------------------------------------------------------------ wref = 1 for i_it in range(nfiles): # get file for this iteration fpfile = listfiles[::skip][i_it] # Log the file we are reading wmsg = 'Reading file {0}' WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1])) # ------------------------------------------------------------------ # read e2ds files and get timestamp # ------------------------------------------------------------------ # read data rout = spirouImage.ReadData(p, filename=fpfile, log=False) loc['SPE'], hdri, nxi, nyi = rout # get acqtime bjdspe = spirouImage.GetAcqTime(p, hdri, name='acqtime', return_value=1, kind='julian') # test whether we want to subtract background if p['IC_DRIFT_BACK_CORR']: # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Measurethe min and max flux miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num], bsize) # subtract off the background (miny) loc['SPE'][order_num] = loc['SPE'][order_num] - miny # ------------------------------------------------------------------ # Compute photon noise uncertainty for iteration file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPE'], loc['WAVE']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsspe, wmodespe = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # ------------------------------------------------------------------ # Compute the correction of the cosmics and re-normalisation by # comparison with the reference spectrum # ------------------------------------------------------------------ # correction of the cosmics and renomalisation by comparison with # the reference spectrum dargs = [p, loc['SPEREF'], loc['SPE']] dkwargs = dict(threshold=p['IC_DRIFT_MAXFLUX'], size=p['IC_DRIFT_BOXSIZE'], cut=p['IC_DRIFT_CUT_E2DS']) spen, cfluxr, cpt = spirouRV.ReNormCosmic2D(*dargs, **dkwargs) # ------------------------------------------------------------------ # Calculate the RV drift # ------------------------------------------------------------------ dargs = [loc['SPEREF'], spen, loc['WAVE']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], threshold=p['IC_DRIFT_MAXFLUX'], size=p['IC_DRIFT_BOXSIZE']) rv = spirouRV.CalcRVdrift2D(*dargs, **dkwargs) # ------------------------------------------------------------------ # Calculate delta time # ------------------------------------------------------------------ # calculate the time from reference (in hours) deltatime = (bjdspe - bjdref) * 24 # ------------------------------------------------------------------ # Calculate RV properties # ------------------------------------------------------------------ # calculate the mean flux ratio meanfratio = np.nanmean(cfluxr) # calculate the weighted mean radial velocity wref = 1.0 / dvrmsref meanrv = -1.0 * np.nansum(rv * wref) / np.nansum(wref) err_meanrv = np.sqrt(dvrmsref + dvrmsspe) merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2)) # Log the RV properties wmsg = ( 'Time from ref={0:.2f} h - Drift mean= {1:.2f} +- {2:.3f} m/s ' '- Flux ratio= {3:.3f} - Nb Comsic= {4}') WLOG(p, '', wmsg.format(deltatime, meanrv, merr, meanfratio, cpt)) # add this iteration to storage loc['DRIFT'][i_it] = -1.0 * rv loc['ERRDRIFT'][i_it] = err_meanrv loc['DELTATIME'][i_it] = deltatime # ------------------------------------------------------------------ # Calculate drift properties # ------------------------------------------------------------------ # get the maximum number of orders to use nomax = nbo # p['IC_DRIFT_N_ORDER_MAX'] # ------------------------------------------------------------------ # if use mean if p['DRIFT_TYPE_E2DS'].upper() == 'WEIGHTED MEAN': # mean radial velocity sumwref = np.nansum(wref[:nomax]) meanrv = np.nansum(loc['DRIFT'][:, :nomax] * wref[:nomax], 1) / sumwref # error in mean radial velocity errdrift2 = loc['ERRDRIFT'][:, :nomax]**2 meanerr = 1.0 / np.sqrt(np.nansum(1.0 / errdrift2, 1)) # add to loc loc['MDRIFT'] = meanrv loc['MERRDRIFT'] = meanerr # else use median else: # median drift loc['MDRIFT'] = np.nanmedian(loc['DRIFT'][:, :nomax], 1) # median err drift loc['MERRDRIFT'] = np.nanmedian(loc['ERRDRIFT'][:, :nomax], 1) # ------------------------------------------------------------------ # set source loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()') # ------------------------------------------------------------------ # peak to peak drift driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT']) driftrms = np.std(loc['MDRIFT']) # log th etotal drift peak-to-peak and rms wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in ' '{2:.2f} hour') wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])] WLOG(p, '', wmsg.format(*wargs)) # ------------------------------------------------------------------ # Plot of mean drift # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot delta time against median drift sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds') # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # TODO: Needs doing # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # add to qc header lists qc_values.append('None') qc_names.append('None') qc_logic.append('None') qc_pass.append(1) # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # Save drift values to file # ------------------------------------------------------------------ # get raw input file name raw_infile = os.path.basename(p['REFFILE']) # construct filename driftfits, tag = spirouConfig.Constants.DRIFT_E2DS_FITS_FILE(p) driftfitsname = os.path.split(driftfits)[-1] # log that we are saving drift values wmsg = 'Saving drift values of Fiber {0} in {1}' WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname)) # add keys from original header file hdict = spirouImage.CopyOriginalKeys(hdr) # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # save drift values p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict) # ------------------------------------------------------------------ # print .tbl result # ------------------------------------------------------------------ # construct filename drifttbl = spirouConfig.Constants.DRIFT_E2DS_TBL_FILE(p) drifttblname = os.path.split(drifttbl)[-1] # construct and write table columnnames = ['time', 'drift', 'drifterr'] columnformats = ['7.4f', '6.2f', '6.3f'] columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']] table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table wmsg = 'Average Drift saved in {0} Saved ' WLOG(p, '', wmsg.format(drifttblname)) spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst') # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, files=None): # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) p = spirouStartup.LoadArguments(p, night_name, files, mainfitsdir='reduced') p = spirouStartup.InitialFileSetup(p, calibdb=True) # set up function name main_name = __NAME__ + '.main()' # ---------------------------------------------------------------------- # Load first file # ---------------------------------------------------------------------- loc = ParamDict() rd = spirouImage.ReadImage(p, p['FITSFILENAME']) loc['DATA'], loc['DATAHDR'], loc['XDIM'], loc['YDIM'] = rd loc.set_sources(['DATA', 'DATAHDR', 'XDIM', 'YDIM'], main_name) # ---------------------------------------------------------------------- # Get object name, airmass and berv # ---------------------------------------------------------------------- # Get object name loc['OBJNAME'] = spirouImage.GetObjName(p, loc['DATAHDR']) # Get the airmass loc['AIRMASS'] = spirouImage.GetAirmass(p, loc['DATAHDR']) # Get the Barycentric correction from header p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, loc['DATAHDR']) # set sources source = main_name + '+ spirouImage.ReadParams()' loc.set_sources(['OBJNAME', 'AIRMASS'], source) loc.set_sources(['OBJNAME', 'AIRMASS'], source) # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # used for plotting only wout = spirouImage.GetWaveSolution(p, image=loc['DATA'], hdr=loc['DATAHDR'], return_wavemap=True, fiber=wave_fiber) _, loc['WAVE'], _ = wout loc.set_source('WAVE', main_name) # ---------------------------------------------------------------------- # Get and Normalise the blaze # ---------------------------------------------------------------------- p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR']) # ---------------------------------------------------------------------- # Load transmission files # ---------------------------------------------------------------------- transdata = spirouDB.GetDatabaseTellMap(p) trans_files = transdata[0] # make sure we have unique filenames for trans_files trans_files = np.unique(trans_files) # ---------------------------------------------------------------------- # Start plotting # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # start interactive plot sPlt.start_interactive_session(p) # ---------------------------------------------------------------------- # Load template (if available) # ---------------------------------------------------------------------- # read filename from telluDB template_file = spirouDB.GetDatabaseObjTemp(p, loc['OBJNAME'], required=False) # if we don't have a template flag it if template_file is None: loc['FLAG_TEMPLATE'] = False loc['TEMPLATE'] = None else: loc['FLAG_TEMPLATE'] = True # load template template, _, _, _ = spirouImage.ReadImage(p, template_file) # add to loc loc['TEMPLATE'] = template # set the source for flag and template loc.set_sources(['FLAG_TEMPLATE', 'TEMPLATE'], main_name) # ---------------------------------------------------------------------- # load the expected atmospheric transmission # ---------------------------------------------------------------------- # read filename from telluDB tapas_file_names = spirouDB.GetDatabaseTellConv(p) tapas_file_name = tapas_file_names[-1] # load atmospheric transmission loc['TAPAS_ALL_SPECIES'] = np.load(tapas_file_name) loc.set_source('TAPAS_ALL_SPECIES', main_name) # ---------------------------------------------------------------------- # Generate the absorption map # ---------------------------------------------------------------------- # get number of files nfiles = len(trans_files) npc = p['TELLU_NUMBER_OF_PRINCIPLE_COMP'] # check that we have enough files (greater than number of principle # components) if nfiles <= npc: emsg1 = 'Not enough "TELL_MAP" files in telluDB to run PCA analysis' emsg2 = '\tNumber of files = {0}, number of PCA components = {1}' emsg3 = '\tNumber of files > number of PCA components' emsg4 = '\tAdd more files or reduce number of PCA components' WLOG(p, 'error', [emsg1, emsg2.format(nfiles, npc), emsg3, emsg4]) # check whether we can used pre-saved abso filetime = spirouImage.GetMostRecent(trans_files) tout = spirouConfig.Constants.TELLU_ABSO_SAVE(p, filetime) abso_save_file, absoprefix = tout use_saved = os.path.exists(abso_save_file) # noinspection PyBroadException try: # try loading from file abso = np.load(abso_save_file) # log progress wmsg = 'Loaded abso from file {0}'.format(abso_save_file) WLOG(p, '', wmsg) except: # set up storage for the absorption abso = np.zeros([nfiles, np.product(loc['DATA'].shape)]) # loop around outputfiles and add them to abso for it, filename in enumerate(trans_files): # load data data_it, _, _, _ = spirouImage.ReadImage(p, filename=filename) # push data into array abso[it, :] = data_it.reshape(np.product(loc['DATA'].shape)) # log progres wmsg = 'Saving abso to file {0}'.format(abso_save_file) WLOG(p, '', wmsg) # remove all abso save files (only need most recent one) afolder = os.path.dirname(abso_save_file) afilelist = os.listdir(afolder) for afile in afilelist: if afile.startswith(absoprefix): os.remove(os.path.join(afolder, afile)) # save to file for later use np.save(abso_save_file, abso) # filter out rows of all NaNs # TODO: Why are we getting all NaN e2ds files? abso_filtered = [] for row in range(len(abso)): if np.sum(np.isnan(abso[row])) != len(abso[row]): abso_filtered.append(abso[row]) else: wargs = [trans_files[row]] WLOG(p, '', 'Removing trans file {0} (all NaN)'.format(*wargs)) abso = np.array(abso_filtered) # log the absorption cube with warnings.catch_warnings(record=True) as w: log_abso = np.log(abso) # ---------------------------------------------------------------------- # Locate valid pixels for PCA # ---------------------------------------------------------------------- # determining the pixels relevant for PCA construction keep = np.isfinite(np.sum(abso, axis=0)) # log fraction of valid (non NaN) pixels fraction = np.nansum(keep) / len(keep) wmsg = 'Fraction of valid pixels (not NaNs) for PCA construction = {0:.3f}' WLOG(p, '', wmsg.format(fraction)) # log fraction of valid pixels > 1 - (1/e) with warnings.catch_warnings(record=True) as w: keep &= np.min(log_abso, axis=0) > -1 fraction = np.nansum(keep) / len(keep) wmsg = 'Fraction of valid pixels with transmission > 1 - (1/e) = {0:.3f}' WLOG(p, '', wmsg.format(fraction)) # ---------------------------------------------------------------------- # Perform PCA analysis on the log of the telluric absorption map # ---------------------------------------------------------------------- # Requires p: # TELLU_NUMBER_OF_PRINCIPLE_COMP # ADD_DERIV_PC # FIT_DERIV_PC # Requires loc: # DATA # Returns loc: # PC # NPC # FIT_PC loc = spirouTelluric.CalculateAbsorptionPCA(p, loc, log_abso, keep) # Plot PCA components # debug plot if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1): # plot the transmission map plot sPlt.tellu_pca_comp_plot(p, loc) # ---------------------------------------------------------------------- # Get master wavelength grid for shifting # ---------------------------------------------------------------------- # get master wave map loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p) loc.set_source('MASTERWAVEFILE', main_name) # log progress wmsg1 = 'Getting master wavelength grid' wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE'])) WLOG(p, '', [wmsg1, wmsg2]) # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # read master wave map mout = spirouImage.GetWaveSolution(p, filename=loc['MASTERWAVEFILE'], return_wavemap=True, quiet=True, fiber=wave_fiber) _, loc['MASTERWAVE'], _ = mout loc.set_source('MASTERWAVE', main_name) # ---------------------------------------------------------------------- # Loop around telluric files # ---------------------------------------------------------------------- for basefilename in p['ARG_FILE_NAMES']: # ------------------------------------------------------------------ # Construct absolute file path # ------------------------------------------------------------------ filename = os.path.join(p['ARG_FILE_DIR'], basefilename) # ------------------------------------------------------------------ # Construct output file names # ------------------------------------------------------------------ outfile1, tag1 = CONSTANTS.TELLU_FIT_OUT_FILE(p, filename) outfilename1 = os.path.basename(outfile1) outfile2, tag2 = CONSTANTS.TELLU_FIT_RECON_FILE(p, filename) outfilename2 = os.path.basename(outfile2) # ------------------------------------------------------------------ # Read filename # ------------------------------------------------------------------ # read image tdata, thdr, _, _ = spirouImage.ReadImage(p, filename) # normalise with blaze function loc['SP'] = tdata / loc['NBLAZE'] loc.set_source('SP', main_name) # ------------------------------------------------------------------ # check that file has valid DPRTYPE # ------------------------------------------------------------------ # get FP_FP DPRTYPE p = spirouImage.ReadParam(p, thdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str) # if dprtype is incorrect skip if p['DPRTYPE'] not in p['ALLOWED_TELLURIC_DPRTYPES']: wmsg1 = 'Skipping file (DPRTYPE incorrect)' wmsg2 = '\t DPRTYPE = {0}'.format(p['DPRTYPE']) WLOG(p, 'warning', [wmsg1, wmsg2]) continue # ------------------------------------------------------------------ # Set storage # ------------------------------------------------------------------ loc['RECON_ABSO'] = np.ones(np.product(loc['DATA'].shape)) loc['AMPS_ABSOL_TOTAL'] = np.zeros(loc['NPC']) loc.set_sources(['RECON_ABSO', 'AMPS_ABSOL_TOTAL'], main_name) # ------------------------------------------------------------------ # Read wavelength solution # ------------------------------------------------------------------ # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wavelength solution wout = spirouImage.GetWaveSolution(p, image=tdata, hdr=thdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) _, loc['WAVE_IT'], loc['WAVEFILE'], loc['WSOURCE'] = wout loc.set_sources(['WAVE_IT', 'WAVEFILE', 'WSOURCE'], main_name) # load wave keys loc = spirouImage.GetWaveKeys(p, loc, thdr) # ------------------------------------------------------------------ # Interpolate at shifted wavelengths (if we have a template) # ------------------------------------------------------------------ if loc['FLAG_TEMPLATE']: # Requires p: # TELLU_FIT_KEEP_FRAC # Requires loc: # DATA # TEMPLATE # WAVE_IT # Returns: # TEMPLATE2 loc = spirouTelluric.BervCorrectTemplate(p, loc, thdr) # debug plot if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1): # plot the transmission map plot sPlt.tellu_fit_tellu_spline_plot(p, loc) # store PC and TAPAS_ALL_SPECIES before shift loc['PC_PRESHIFT'] = np.array(loc['PC']) loc['TAPAS_ALL_PRESHIFT'] = np.array(loc['TAPAS_ALL_SPECIES']) loc.set_sources(['PC_PRESHIFT', 'TAPAS_ALL_PRESHIFT'], main_name) # ------------------------------------------------------------------ # Shift the pca components to correct frame # ------------------------------------------------------------------ # log process wmsg1 = 'Shifting PCA components from master wavelength grid' wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE'])) WLOG(p, '', [wmsg1, wmsg2]) # shift pca components (one by one) for comp in range(loc['NPC']): wargs = [p, loc['PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT']] shift_pc = spirouTelluric.Wave2Wave(*wargs, reshape=True) loc['PC'][:, comp] = shift_pc.reshape(wargs[1].shape) wargs = [ p, loc['FIT_PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT'] ] shift_fpc = spirouTelluric.Wave2Wave(*wargs, reshape=True) loc['FIT_PC'][:, comp] = shift_fpc.reshape(wargs[1].shape) # ------------------------------------------------------------------ # Shift the tapas spectrum to correct frame # ------------------------------------------------------------------ # log process wmsg1 = 'Shifting TAPAS spectrum from master wavelength grid' wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE'])) WLOG(p, '', [wmsg1, wmsg2]) # shift tapas for comp in range(len(loc['TAPAS_ALL_SPECIES'])): wargs = [ p, loc['TAPAS_ALL_SPECIES'][comp], loc['MASTERWAVE'], loc['WAVE_IT'] ] stapas = spirouTelluric.Wave2Wave(*wargs, reshape=True) loc['TAPAS_ALL_SPECIES'][comp] = stapas.reshape(wargs[1].shape) # Debug plot to test shifting if p['DRS_PLOT'] and p['DRS_DEBUG'] > 1: sPlt.tellu_fit_debug_shift_plot(p, loc) # ------------------------------------------------------------------ # Calculate reconstructed absorption # ------------------------------------------------------------------ # Requires p: # TELLU_FIT_MIN_TRANSMISSION # TELLU_FIT_NITER # TELLU_LAMBDA_MIN # TELLU_LAMBDA_MAX # TELLU_FIT_VSINI # TRANSMISSION_CUT # FIT_DERIV_PC # LOG_OPT # Requires loc: # FLAG_TEMPLATE # TAPAS_ALL_SPECIES # AMPS_ABSOL_TOTAL # WAVE_IT # TEMPLATE2 # FIT_PC # NPC # PC # Returns loc: # SP2 # TEMPLATE2 # RECON_ABSO # AMPS_ABSOL_TOTAL loc = spirouTelluric.CalcReconAbso(p, loc) # debug plot if p['DRS_PLOT'] > 0: # plot the recon abso plot sPlt.tellu_fit_recon_abso_plot(p, loc) # ------------------------------------------------------------------ # Get molecular absorption # ------------------------------------------------------------------ # Requires p: # TELLU_FIT_LOG_LIMIT # Requeres loc: # RECON_ABSO # TAPAS_ALL_SPECIES # Returns loc: # TAPAS_{molecule} loc = spirouTelluric.CalcMolecularAbsorption(p, loc) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # get SNR for each order from header nbo = loc['DATA'].shape[0] snr_order = p['QC_FIT_TELLU_SNR_ORDER'] snr = spirouImage.Read1Dkey(p, thdr, p['kw_E2DS_SNR'][0], nbo) # check that SNR is high enough if snr[snr_order] < p['QC_FIT_TELLU_SNR_MIN']: fmsg = 'low SNR in order {0}: ({1:.2f} < {2:.2f})' fargs = [snr_order, snr[snr_order], p['QC_FIT_TELLU_SNR_MIN']] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(snr[snr_order]) qc_name_str = 'SNR[{0}]'.format(snr_order) qc_names.append(qc_name_str) qc_logic.append('{0} < {1:.2f}'.format(qc_name_str, p['QC_FIT_TELLU_SNR_ORDER'])) # ---------------------------------------------------------------------- # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') continue # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # Get components amplitudes for header # ------------------------------------------------------------------ # get raw file name raw_in_file = os.path.basename(p['FITSFILENAME']) # copy original keys hdict = spirouImage.CopyOriginalKeys(thdr) # add version number hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file', values=p['ARG_FILE_NAMES']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # set tellu keys npc = loc['NPC'] hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_NPC'], value=npc) hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_FIT_DPC'], value=p['FIT_DERIV_PC']) hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_ADD_DPC'], value=p['ADD_DERIV_PC']) if p['ADD_DERIV_PC']: values = loc['AMPS_ABSOL_TOTAL'][:npc - 2] hdict = spirouImage.AddKey1DList(p, hdict, p['KW_TELLU_AMP_PC'], values=values, dim1name='amp') hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_DV_TELL1'], value=loc['AMPS_ABSOL_TOTAL'][npc - 2]) hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_DV_TELL2'], value=loc['AMPS_ABSOL_TOTAL'][npc - 1]) else: values = loc['AMPS_ABSOL_TOTAL'][:npc] hdict = spirouImage.AddKey1DList(p, hdict, p['KW_TELLU_AMP_PC'], values=values, dim1name='PC') # ------------------------------------------------------------------ # Write corrected spectrum to E2DS # ------------------------------------------------------------------ # reform the E2DS sp_out = loc['SP2'] / loc['RECON_ABSO'] sp_out = sp_out.reshape(loc['DATA'].shape) # multiply by blaze sp_out = sp_out * loc['NBLAZE'] hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) # log progress wmsg = 'Saving {0} to file'.format(outfilename1) WLOG(p, '', wmsg) # write sp_out to file p = spirouImage.WriteImage(p, outfile1, sp_out, hdict) # ------------------------------------------------------------------ # 1-dimension spectral S1D (uniform in wavelength) # ------------------------------------------------------------------ # get arguments for E2DS to S1D e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']] # get 1D spectrum xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave') # Plot the 1D spectrum if p['DRS_PLOT'] > 0: sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1) # construct file name targs = [p, raw_in_file] s1dfile1, tag3 = spirouConfig.Constants.TELLU_FIT_S1D_FILE1(*targs) s1dfilename1 = os.path.basename(s1dfile1) # add header keys # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) # log writing to file wmsg = 'Saving 1D spectrum (uniform in wavelength) in {0}' WLOG(p, '', wmsg.format(s1dfilename1)) # Write to file columns = ['wavelength', 'flux', 'eflux'] values = [xs1d1, ys1d1, np.zeros_like(ys1d1)] units = ['nm', None, None] s1d1 = spirouImage.MakeTable(p, columns, values, units=units) spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict) # ------------------------------------------------------------------ # 1-dimension spectral S1D (uniform in velocity) # ------------------------------------------------------------------ # get arguments for E2DS to S1D e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']] # get 1D spectrum xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity') # Plot the 1D spectrum if p['DRS_PLOT'] > 0: sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2) # construct file name targs = [p, raw_in_file] s1dfile2, tag4 = spirouConfig.Constants.TELLU_FIT_S1D_FILE2(*targs) s1dfilename2 = os.path.basename(s1dfile2) # add header keys hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4) hdict = spirouImage.AddKey(p, hdict, p['KW_EXT_TYPE'], value=p['DPRTYPE']) # log writing to file wmsg = 'Saving 1D spectrum (uniform in velocity) in {0}' WLOG(p, '', wmsg.format(s1dfilename2)) # Write to file columns = ['wavelength', 'flux', 'eflux'] values = [xs1d2, ys1d2, np.zeros_like(ys1d2)] units = ['nm', None, None] s1d2 = spirouImage.MakeTable(p, columns, values, units=units) spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict) # ------------------------------------------------------------------ # Write reconstructed absorption to E2DS # ------------------------------------------------------------------ # set up empty storage recon_abso2 = np.zeros_like(loc['DATA']) # get dimensions of data ydim, xdim = loc['DATA'].shape # loop around orders for order_num in range(ydim): # get start and end points start, end = xdim * order_num, xdim * order_num + xdim # save to storage recon_abso2[order_num, :] = loc['RECON_ABSO'][start:end] # add molecular absorption to file for it, molecule in enumerate(p['TELLU_ABSORBERS'][1:]): # get molecule keyword store and key molkey = '{0}_{1}'.format(p['KW_TELLU_ABSO'][0], molecule.upper()) molkws = [molkey, 0, 'Absorption in {0}'.format(molecule.upper())] # load into hdict hdict = spirouImage.AddKey(p, hdict, molkws, value=loc[molkey]) # add water col if molecule == 'h2o': loc['WATERCOL'] = loc[molkey] # set source loc.set_source('WATERCOL', main_name) # add the tau keys hdict = spirouImage.AddKey(p, hdict, p['KW_TAU_H2O'], value=loc['TAU_H2O']) hdict = spirouImage.AddKey(p, hdict, p['KW_TAU_REST'], value=loc['TAU_REST']) # log progress wmsg = 'Saving {0} to file'.format(outfilename2) WLOG(p, '', wmsg) # write recon_abso to file hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2) p = spirouImage.WriteImage(p, outfile2, recon_abso2, hdict) # ------------------------------------------------------------------ # Update the Telluric database # ------------------------------------------------------------------ if p['QC']: # add TELLU_OBJ to telluric database oparams = dict(objname=loc['OBJNAME'], berv=loc['BERV'], airmass=loc['AIRMASS'], watercol=loc['WATERCOL']) spirouDB.UpdateDatabaseTellObj(p, outfilename1, **oparams) # copy file to database spirouDB.PutTelluFile(p, outfile1) # add TELLU_RECON to telluric database # add TELLU_OBJ to telluric database oparams = dict(objname=loc['OBJNAME'], berv=loc['BERV'], airmass=loc['AIRMASS'], watercol=loc['WATERCOL']) spirouDB.UpdateDatabaseTellRecon(p, outfilename2, **oparams) # copy file to database spirouDB.PutTelluFile(p, outfile2) # ---------------------------------------------------------------------- # End plotting # ---------------------------------------------------------------------- # debug plot if p['DRS_PLOT'] > 0: # end interactive session sPlt.end_interactive_session(p) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None): """ cal_wave_spirou.py main function, if night_name and files are None uses arguments from run time i.e.: cal_wave_spirou.py [night_directory] [fpfile] [hcfiles] :param night_name: string or None, the folder within data reduced directory containing files (also reduced directory) i.e. /data/reduced/20170710 would be "20170710" but /data/reduced/AT5/20180409 is "AT5/20180409" :param fpfile: string, or None, the FP file to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :param hcfiles: string, list or None, the list of HC files to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) if hcfiles is None or fpfile is None: names, types = ['fpfile', 'hcfiles'], [str, str] customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1], types, names, last_multi=True) else: customargs = dict(hcfiles=hcfiles, fpfile=fpfile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsdir='reduced', mainfitsfile='hcfiles') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE']) fiber1 = str(p['FIBER']) p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES']) fiber2 = str(p['FIBER']) # set the hcfilename to the first hcfilenames hcfitsfilename = hcfilenames[0] # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Have to check that the fibers match # ---------------------------------------------------------------------- if fiber1 == fiber2: p['FIBER'] = fiber1 fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()' p.set_source('FIBER', fsource) else: emsg = 'Fiber not matching for {0} and {1}, should be the same' eargs = [hcfitsfilename, fpfitsfilename] WLOG(p, 'error', emsg.format(*eargs)) # set the fiber type p['FIB_TYP'] = [p['FIBER']] p.set_source('FIB_TYP', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Read FP and HC files # ---------------------------------------------------------------------- # read and combine all HC files except the first (fpfitsfilename) rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]] p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs) # read first file (fpfitsfilename) fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename) # add data and hdr to loc loc = ParamDict() loc['HCDATA'], loc['HCHDR'], loc['HCCDR'] = hcdata, hchdr, hchdr.comments loc['FPDATA'], loc['FPHDR'], loc['FPCDR'] = fpdata, fphdr, fphdr.comments # set the source sources = ['HCDATA', 'HCHDR', 'HCCDR'] loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()') sources = ['FPDATA', 'FPHDR', 'FPCDR'] loc.set_sources(sources, 'spirouImage.ReadImage()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hchdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hchdr, name='exptime') # get gain p = spirouImage.GetGain(p, hchdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # get lamp parameters p = spirouWAVE2.get_lamp_parameters(p, hchdr) # get number of orders # we always get fibre A number because AB is doubled in constants file loc['NBO'] = p['QC_LOC_NBO_FPALL']['A'] loc.set_source('NBO', __NAME__ + '.main()') # get number of pixels in x from hcdata size loc['NBPIX'] = loc['HCDATA'].shape[1] loc.set_source('NBPIX', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Read blaze # ---------------------------------------------------------------------- # get tilts p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr) loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile') # make copy of blaze (as it's overwritten later in CCF part) # TODO is this needed? More sensible to make and set copy in CCF? loc['BLAZE2'] = np.copy(loc['BLAZE']) # ---------------------------------------------------------------------- # Read wave solution # ---------------------------------------------------------------------- # wavelength file; we will use the polynomial terms in its header, # NOT the pixel values that would need to be interpolated # set source of wave file wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution' # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hchdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'], wsource) poly_wave_sol = loc['WAVEPARAMS'] # ---------------------------------------------------------------------- # Check that wave parameters are consistent with "ic_ll_degr_fit" # ---------------------------------------------------------------------- loc = spirouImage.CheckWaveSolConsistency(p, loc) # ---------------------------------------------------------------------- # HC wavelength solution # ---------------------------------------------------------------------- # log that we are running the HC part and the mode wmsg = 'Now running the HC solution, mode = {0}' WLOG(p, 'info', wmsg.format(p['WAVE_MODE_HC'])) # get the solution loc = spirouWAVE2.do_hc_wavesol(p, loc) # ---------------------------------------------------------------------- # Quality control - HC solution # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']: fmsg = 'Sigma too high ({0:.5f} > {1:.5f})' fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX'])) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['SIG1']) qc_names.append('SIG1 HC') qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX'])) # ---------------------------------------------------------------------- # check the difference between consecutive orders is always positive # get the differences wave_diff = loc['WAVE_MAP2'][1:] - loc['WAVE_MAP2'][:-1] if np.min(wave_diff) < 0: fmsg = 'Negative wavelength difference between orders' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.min(wave_diff)) qc_names.append('MIN WAVE DIFF HC') qc_logic.append('MIN WAVE DIFF < 0') # ---------------------------------------------------------------------- # check the difference between consecutive pixels along an order is # always positive # loop through the orders ord_check = np.zeros((loc['NBO']), dtype=bool) for order in range(loc['NBO']): oc = np.all(loc['WAVE_MAP2'][order, 1:] > loc['WAVE_MAP2'][order, :-1]) ord_check[order] = oc # TODO: Melissa Why is this here???? # ord_check[5] = False if np.all(ord_check): qc_pass.append(1) qc_values.append('None') else: fmsg = 'Negative wavelength difference along an order' fail_msg.append(fmsg) passed = False qc_pass.append(0) qc_values.append(np.ndarray.tolist(np.where(~ord_check)[0])) # add to qc header lists # vale: array of orders where it fails qc_names.append('WAVE DIFF ALONG ORDER HC') qc_logic.append('WAVE DIFF ALONG ORDER < 0') # ---------------------------------------------------------------------- # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ---------------------------------------------------------------------- # log the global stats # ---------------------------------------------------------------------- # calculate catalog-fit residuals in km/s res_hc = [] sumres_hc = 0.0 sumres2_hc = 0.0 for order in range(loc['NBO']): # get HC line wavelengths for the order order_mask = loc['ORD_T'] == order hc_x_ord = loc['XGAU_T'][order_mask] hc_ll_ord = np.polyval(loc['POLY_WAVE_SOL'][order][::-1], hc_x_ord) hc_ll_cat = loc['WAVE_CATALOG'][order_mask] hc_ll_diff = hc_ll_ord - hc_ll_cat res_hc.append(hc_ll_diff * speed_of_light / hc_ll_cat) sumres_hc += np.nansum(res_hc[order]) sumres2_hc += np.nansum(res_hc[order]**2) total_lines_hc = len(np.concatenate(res_hc)) final_mean_hc = sumres_hc / total_lines_hc final_var_hc = (sumres2_hc / total_lines_hc) - (final_mean_hc**2) wmsg1 = 'On fiber {0} HC fit line statistic:'.format(p['FIBER']) wargs2 = [ final_mean_hc * 1000.0, np.sqrt(final_var_hc) * 1000.0, total_lines_hc, 1000.0 * np.sqrt(final_var_hc / total_lines_hc) ] wmsg2 = ('\tmean={0:.3f}[m/s] rms={1:.1f} {2} HC lines (error on mean ' 'value:{3:.4f}[m/s])'.format(*wargs2)) WLOG(p, 'info', [wmsg1, wmsg2]) # ---------------------------------------------------------------------- # Save wave map to file # ---------------------------------------------------------------------- # TODO single file-naming function? Ask Neil # get base input filenames bfilenames = [] for raw_file in p['ARG_FILE_NAMES']: bfilenames.append(os.path.basename(raw_file)) # get wave filename wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA(p) wavefitsname = os.path.basename(wavefits) # log progress WLOG(p, '', 'Saving wave map to {0}'.format(wavefitsname)) # log progress wargs = [p['FIBER'], wavefitsname] wmsg = 'Write wavelength solution for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # write solution to fitsfilename header # copy original keys hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR']) # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) # TODO add DRS_DATE and DRS_NOW hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BLAZFILE']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add wave solution date hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'], value=p['MAX_TIME_HUMAN']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'], value=p['MAX_TIME_UNIX']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file', values=p['ARG_FILE_NAMES']) # add number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['POLY_WAVE_SOL'].shape[0]) # add degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['POLY_WAVE_SOL'].shape[1] - 1) # add wave solution hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['POLY_WAVE_SOL']) # write the wave "spectrum" p = spirouImage.WriteImage(p, wavefits, loc['WAVE_MAP2'], hdict) # get filename for E2DS calibDB copy of FITSFILENAME e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p) wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]] wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # make a copy of the E2DS file for the calibBD hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2) p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict) # ---------------------------------------------------------------------- # Save resolution and line profiles to file # ---------------------------------------------------------------------- raw_infile = os.path.basename(p['FITSFILENAME']) # get wave filename resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p) resfitsname = os.path.basename(resfits) WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname)) # make a copy of the E2DS file for the calibBD # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) # TODO add DRS_DATE and DRS_NOW hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3) # get res data in correct format resdata, hdicts = spirouWAVE2.generate_res_files(p, loc, hdict) # save to file p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts) # ---------------------------------------------------------------------- # Update calibDB # ---------------------------------------------------------------------- if p['QC']: # set the wave key keydb = 'WAVE_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, wavefits) # update the master calib DB file with new key spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR']) # set the hcref key keydb = 'HCREF_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, e2dscopy_filename) # update the master calib DB file with new key e2dscopyfits = os.path.split(e2dscopy_filename)[-1] spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR']) # ---------------------------------------------------------------------- # Update header of current files # ---------------------------------------------------------------------- # only copy over if QC passed if p['QC']: rdir = os.path.dirname(wavefits) # loop around hc files and update header with for rawhcfile in p['ARG_FILE_NAMES']: hcfile = os.path.join(rdir, rawhcfile) raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile) p = spirouImage.UpdateWaveSolutionHC(p, loc, raw_infilepath1) # ---------------------------------------------------------------------- # HC+FP wavelength solution # ---------------------------------------------------------------------- # check if there's a FP input and if HC solution passed QCs if has_fp and p['QC']: # log that we are doing the FP solution wmsg = 'Now running the combined FP-HC solution, mode = {}' WLOG(p, 'info', wmsg.format(p['WAVE_MODE_FP'])) # do the wavelength solution loc = spirouWAVE2.do_fp_wavesol(p, loc) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # get parameters ffrom p p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX'] p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX'] # set passed variable and fail message list # passed, fail_msg = True, [] # qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # check the difference between consecutive orders is always positive # get the differences wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1] if np.min(wave_diff) < 0: fmsg = 'Negative wavelength difference between orders' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.min(wave_diff)) qc_names.append('MIN WAVE DIFF FP-HC') qc_logic.append('MIN WAVE DIFF < 0') # ---------------------------------------------------------------------- # check for infinites and NaNs in mean residuals from fit if ~np.isfinite(loc['X_MEAN_2']): # add failed message to the fail message list fmsg = 'NaN or Inf in X_MEAN_2' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['X_MEAN_2']) qc_names.append('X_MEAN_2') qc_logic.append('X_MEAN_2 not finite') # ---------------------------------------------------------------------- # iterate through Littrow test cut values lit_it = 2 # checks every other value # TODO: This QC check (or set of QC checks needs re-writing it is # TODO: nearly impossible to understand for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2): # get x cut point x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it] # get the sigma for this cut point sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it] # get the abs min and max dev littrow values min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it]) max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it]) # get the corresponding order min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it] max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it] # check if sig littrow is above maximum rms_littrow_max = p['QC_RMS_LITTROW_MAX'] dev_littrow_max = p['QC_DEV_LITTROW_MAX'] if sig_littrow > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f})') fargs = [x_cut_point, sig_littrow, rms_littrow_max] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(sig_littrow) qc_names.append('sig_littrow') qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max)) # ---------------------------------------------------------------------- # check if min/max littrow is out of bounds if np.max([max_littrow, min_littrow]) > dev_littrow_max: fmsg = ('Littrow test (x={0}) failed (min|max dev = ' '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})') fargs = [ x_cut_point, min_littrow, max_littrow, dev_littrow_max, min_littrow_ord, max_littrow_ord ] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) # TODO: Should this be the QC header values? # TODO: it does not change the outcome of QC (i.e. passed=False) # TODO: So what is the point? # if sig was out of bounds, recalculate if sig_littrow > rms_littrow_max: # conditions check1 = min_littrow > dev_littrow_max check2 = max_littrow > dev_littrow_max # get the residuals respix = loc['LITTROW_YY_' + str(lit_it)][x_it] # check if both are out of bounds if check1 and check2: # remove respective orders worst_order = (min_littrow_ord, max_littrow_ord) respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if min is out of bounds elif check1: # remove respective order worst_order = min_littrow_ord respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if max is out of bounds elif check2: # remove respective order worst_order = max_littrow_ord respix_2 = np.delete(respix, max_littrow_ord) redo_sigma = True # else do not recalculate sigma else: redo_sigma, respix_2, worst_order = False, None, None wmsg = 'No outlying orders, sig littrow not recalculated' fail_msg.append(wmsg.format()) # if outlying order, recalculate stats if redo_sigma: mean = np.nansum(respix_2) / len(respix_2) mean2 = np.nansum(respix_2**2) / len(respix_2) rms = np.sqrt(mean2 - mean**2) if rms > rms_littrow_max: fmsg = ( 'Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] fail_msg.append(fmsg.format(*fargs)) else: wargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] wmsg = ( 'Littrow test (x={0}) passed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fail_msg.append(wmsg.format(*wargs)) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.max([max_littrow, min_littrow])) qc_names.append('max or min littrow') qc_logic.append('max or min littrow > {0:.2f}' ''.format(dev_littrow_max)) # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # archive result in e2ds spectra # ------------------------------------------------------------------ # get raw input file name(s) raw_infiles1 = [] for hcfile in p['HCFILES']: raw_infiles1.append(os.path.basename(hcfile)) raw_infile2 = os.path.basename(p['FPFILE']) # get wave filename wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p) wavefitsname = os.path.split(wavefits)[-1] # log progress wargs = [p['FIBER'], wavefits] wmsg = 'Write wavelength solution for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # write solution to fitsfilename header # copy original keys hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR']) # add version number hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='fpfile', values=p['FPFILE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE2'], dim1name='hcfile', values=p['HCFILES']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add wave solution date hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'], value=p['MAX_TIME_HUMAN']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'], value=p['MAX_TIME_UNIX']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__) # add number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['LL_PARAM_FINAL'].shape[0]) # add degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['LL_PARAM_FINAL'].shape[1] - 1) # add wave solution hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['LL_PARAM_FINAL']) # add FP CCF drift # target RV and width hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_TARG_RV'], value=p['TARGET_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_WIDTH'], value=p['CCF_WIDTH']) # the rv step # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1]) # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP']) # add ccf stats hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_DRIFT'], value=loc['CCF_RES'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_CONTRAST'], value=loc['CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MAXCPP'], value=loc['MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_LINES'], value=np.nansum(loc['TOT_LINE'])) # write the wave "spectrum" hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict) # get filename for E2DS calibDB copy of FITSFILENAME e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0] wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]] wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # make a copy of the E2DS file for the calibBD p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict) # only copy over if QC passed if p['QC']: # loop around hc files and update header with for hcfile in p['HCFILES']: raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1) # update fp file raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2) # ------------------------------------------------------------------ # Save to result table # ------------------------------------------------------------------ # calculate stats for table final_mean = 1000 * loc['X_MEAN_2'] final_var = 1000 * loc['X_VAR_2'] num_lines = loc['TOTAL_LINES_2'] err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines) sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)]) # construct filename wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p) wavetblname = os.path.basename(wavetbl) # construct and write table columnnames = [ 'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err', 'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500', 'rms_L3000', 'rms_L3500' ] columnformats = [ '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}' ] columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]], [p['FIBER']], [final_mean], [final_var], [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]], [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]], [sig_littrow[5]], [sig_littrow[6]]] # make table table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # merge table wmsg = 'Global result summary saved in {0}' WLOG(p, '', wmsg.format(wavetblname)) spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Save line list table file # ------------------------------------------------------------------ # construct filename # TODO proper column values wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p) wavelltblname = os.path.split(wavelltbl)[-1] # construct and write table columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx'] columnformats = [ '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}', '{:8.4f}' ] columnvalues = [] # construct column values (flatten over orders) for it in range(len(loc['X_DETAILS_2'])): for jt in range(len(loc['X_DETAILS_2'][it][0])): row = [ float(it), loc['X_DETAILS_2'][it][0][jt], loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt], loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt] ] columnvalues.append(row) # log saving wmsg = 'List of lines used saved in {0}' WLOG(p, '', wmsg.format(wavelltblname)) # make table columnvalues = np.array(columnvalues).T table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Move to calibDB and update calibDB # ------------------------------------------------------------------ if p['QC']: # set the wave key keydb = 'WAVE_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, wavefits) # update the master calib DB file with new key spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR']) # set the hcref key keydb = 'HCREF_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, e2dscopy_filename) # update the master calib DB file with new key e2dscopyfits = os.path.split(e2dscopy_filename)[-1] spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR']) # If the HC solution failed QCs we do not compute FP-HC solution elif has_fp and not p['QC']: wmsg = 'HC solution failed quality controls; FP not processed' WLOG(p, 'warning', wmsg) # If there is no FP file we log that elif not has_fp: wmsg = 'No FP file given; FP-HC combined solution cannot be generated' WLOG(p, 'warning', wmsg) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return p and loc return dict(locals())