def main(night_name=None, reffile=None):
    """
    cal_DRIFTPEAK_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFTPEAK_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, p['REFFILENAME'])
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['SPEREF', 'NUMBER_ORDERS'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get lamp type
    # ----------------------------------------------------------------------
    # get lamp type
    if p['KW_EXT_TYPE'][0] in hdr:
        ext_type = hdr[p['KW_EXT_TYPE'][0]]
        drift_types = p['DRIFT_PEAK_ALLOWED_TYPES'].keys()
        found = False
        for kind in drift_types:
            if ext_type == kind:
                loc['LAMP'] = p['DRIFT_PEAK_ALLOWED_TYPES'][kind]
                found = True
        if not found:
            eargs1 = [p['KW_EXT_TYPE'][0], ' or '.join(drift_types)]
            emsg1 = (
                'Wrong type of image for Drift, header key "{0}" should be'
                '{1}'.format(*eargs1))
            emsg2 = '\tPlease check DRIFT_PEAK_ALLOWED_TYPES'
            WLOG(p, 'error', [emsg1, emsg2])
    else:
        emsg = 'Header key = "{0}" missing from file {1}'
        eargs = [p['KW_EXT_TYPE'][0], p['REFFILENAME']]
        WLOG(p, 'error', emsg.format(*eargs))
    loc.set_source('LAMP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])
    # correct for flat file
    loc['SPEREF'] = loc['SPEREF'] / loc['FLAT']

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # test whether we want to subtract background
    if p['IC_DRIFT_BACK_CORR']:
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            # get the box size from constants
            bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
            # Measurethe min and max flux
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            # subtract off the background (miny)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Identify FP peaks in reference file
    # ----------------------------------------------------------------------
    # log that we are identifying peaks
    wmsg = 'Identification of lines in reference file: {0}'
    WLOG(p, '', wmsg.format(p['REFFILE']))
    # get the position of FP peaks from reference file
    loc = spirouRV.CreateDriftFile(p, loc)

    # ----------------------------------------------------------------------
    # Removal of suspiciously wide FP lines
    # ----------------------------------------------------------------------
    loc = spirouRV.RemoveWidePeaks(p, loc)

    # ----------------------------------------------------------------------
    # Get reference drift
    # ----------------------------------------------------------------------
    # are we using gaussfit?
    gaussfit = p['DRIFT_PEAK_GETDRIFT_GAUSSFIT']
    # get drift
    loc['XREF'] = spirouRV.GetDrift(p,
                                    loc['SPEREF'],
                                    loc['ORDPEAK'],
                                    loc['XPEAK'],
                                    gaussfit=gaussfit)
    loc.set_source('XREF', __NAME__ + '/main()')
    # remove any drifts that are zero (i.e. peak not measured
    loc = spirouRV.RemoveZeroPeaks(p, loc)

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_PEAK_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_LEFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_RIGHT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['MEANRV'] = np.zeros(nfiles)
    loc['MEANRV_LEFT'] = np.zeros(nfiles)
    loc['MEANRV_RIGHT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # add sources
    source = __NAME__ + '/main()'
    keys = [
        'drift', 'drift_left', 'drift_right', 'errdrift', 'deltatime',
        'meanrv', 'meanrv_left', 'meanrv_right', 'merrdrift', 'fluxratio'
    ]
    loc.set_sources(keys, source)

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomin = p['IC_DRIFT_PEAK_N_ORDER_MIN']
    nomax = p['IC_DRIFT_PEAK_N_ORDER_MAX']
    # loop around files
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # apply flat
        loc['SPE'] = loc['SPE'] / loc['FLAT']
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # ----------------------------------------------------------------------
        # Background correction
        # ----------------------------------------------------------------------
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        loc['DELTATIME'][i_it] = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate PearsonR coefficient
        # ------------------------------------------------------------------
        pargs = [loc['NUMBER_ORDERS'], loc['SPE'], loc['SPEREF']]
        correlation_coeffs = spirouRV.PearsonRtest(*pargs)
        # ----------------------------------------------------------------------
        # Get drift with comparison to the reference image
        # ----------------------------------------------------------------------
        # only calculate drift if the correlation between orders and
        #   reference file is above threshold
        prcut = p['DRIFT_PEAK_PEARSONR_CUT']
        if np.min(correlation_coeffs[nomin:nomax]) > prcut:
            # get drifts for each order
            dargs = [p, loc['SPE'], loc['ORDPEAK'], loc['XREF']]
            x = spirouRV.GetDrift(*dargs, gaussfit=gaussfit)
            # get delta v
            loc['DV'] = (x - loc['XREF']) * loc['VRPEAK']
            # sigma clip
            loc = spirouRV.SigmaClip(loc, sigma=p['DRIFT_PEAK_SIGMACLIP'])
            # work out median drifts per order
            loc = spirouRV.DriftPerOrder(loc, i_it)
            # work out mean drift across all orders
            loc = spirouRV.DriftAllOrders(p, loc, i_it, nomin, nomax)
            # log the mean drift
            wmsg = ('Time from ref= {0:.2f} h - Flux Ratio= {1:.3f} '
                    '- Drift mean= {2:.2f} +- {3:.2f} m/s')
            wargs = [
                loc['DELTATIME'][i_it], loc['FLUXRATIO'][i_it],
                loc['MEANRV'][i_it], loc['MERRDRIFT'][i_it]
            ]
            WLOG(p, 'info', wmsg.format(*wargs))
        # else we can't use this extract
        else:
            if p['DRS_PLOT'] > 0:
                # start interactive session if needed
                sPlt.plt.ioff()
                # plot comparison between spe and ref
                sPlt.drift_plot_correlation_comp(p, loc, correlation_coeffs,
                                                 i_it)
                sPlt.plt.show()
                sPlt.plt.close()
                # turn interactive plotting back on
                sPlt.plt.ion()
            # log that we cannot use this extraction
            wmsg1 = 'The correlation of some orders compared to the template is'
            wmsg2 = '   < {0}, something went wrong in the extract.'
            WLOG(p, 'warning', wmsg1)
            WLOG(p, 'warning', wmsg2.format(prcut))
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MEANRV']) - np.min(loc['MEANRV'])
    driftrms = np.std(loc['MEANRV'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_dtime_against_drift(p, loc)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFTPEAK_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTPEAK_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr', 'drift_left', 'drift_right']
    columnformats = ['7.4f', '6.2f', '6.3f', '6.2f', '6.2f']
    columnvalues = [
        loc['DELTATIME'], loc['MEANRV'], loc['MERRDRIFT'], loc['MEANRV_LEFT'],
        loc['MEANRV_RIGHT']
    ]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Plot amp and llpeak
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] and p['DRIFT_PEAK_PLOT_LINE_LOG_AMP']:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_llpeak_amps(p, loc)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None,
         e2dsfile=None,
         mask=None,
         rv=None,
         width=None,
         step=None):
    """
    cal_CCF_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV]
                               [width] [step]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param e2dsfile: string, the E2DS file to use
    :param mask: string, the mask file to use (i.e. "UrNe.mas")
    :param rv: float, the target RV to use
    :param width: float, the CCF width to use
    :param step: float, the CCF step to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    pos = [0, 1, 2, 3, 4]
    fmt = [str, str, float, float, float]
    name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step']
    lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step']
    req = [True, True, True, False, False]
    call = [e2dsfile, mask, rv, width, step]
    call_priority = [True, True, True, True, True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='e2dsfile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Deal with optional run time arguments
    # ----------------------------------------------------------------------
    # define default arguments (if ccf_width and ccf_step are not defined
    # in function call or run time arguments
    if 'ccf_width' not in p:
        p['CCF_WIDTH'] = p['IC_CCF_WIDTH']
    if 'ccf_step' not in p:
        p['CCF_STEP'] = p['IC_CCF_STEP']

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename)
    # add to loc
    loc = ParamDict()
    loc['E2DS'] = e2ds
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    # get obj name
    p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str)

    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # log
    WLOG(p, '', 'Reading wavelength solution ')
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # TODO We do not need to correct FLAT
    # log
    # WLOG(p, '', 'Reading Flat-Field ')

    # get flat
    # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # get blaze
    # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    p, blaze0 = spirouImage.ReadBlazeFile(p, hdr)

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # Modification of E2DS array  with N.A.N
    if np.isnan(np.sum(e2ds)):
        WLOG(p, 'warning', 'NaN values found in e2ds, converting process')
        #  First basic approach Replacing N.A.N by zeros
        #    e2ds[np.isnan(e2ds)] = 0

        # Second approach replacing N.A.N by the Adjusted Blaze
        e2dsb = e2ds / blaze0
        for i in np.arange(len(e2ds)):
            with warnings.catch_warnings(record=True) as _:
                rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])])
            if np.isnan(rap):
                rap = 0.0
            e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap)

    # ----------------------------------------------------------------------
    # correct extracted image for flat
    # ----------------------------------------------------------------------
    # loc['E2DSFF'] = e2ds/loc['FLAT']
    # loc['E2DSFF'] = e2ds*1.
    loc['E2DSFF'] = e2ds
    loc.set_source('E2DSFF', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ----------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['E2DS'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))
    wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s'
    WLOG(p, 'info', wmsg.format(wmeanref))
    # TEST N.A.N
    # loc['E2DSFF'][20:22,2000:3000]=np.nan
    # e2ds[20:30,1000:3000]=np.nan

    # ----------------------------------------------------------------------
    # Reference plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p,
                                          loc,
                                          x=loc['WAVE_LL'],
                                          y=loc['E2DS'])
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=0)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # archive ccf to table
    # ----------------------------------------------------------------------
    # construct filename
    res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p)
    # log progress
    WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file))
    # define column names
    columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig']
    # define values for each column
    values = [
        loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'],
        np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]),
        loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2]
    ]
    # define the format for each column
    formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f']
    # construct astropy table from column names, values and formats
    table = spirouImage.MakeTable(p, columns, values, formats)
    # save table to file
    spirouImage.WriteTable(p, table, res_table_file, fmt='ascii')

    # ----------------------------------------------------------------------
    # archive ccf to fits file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['E2DSFILE'])
    # construct folder and filename
    corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p)
    corfilename = os.path.split(corfile)[-1]
    # log that we are archiving the CCF on file
    WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename))
    # get constants from p
    mask = p['CCF_MASK']
    # if file exists remove it
    if os.path.exists(corfile):
        os.remove(corfile)
    # add the average ccf to the end of ccf
    data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']])
    # add drs keys
    hdict = spirouImage.CopyOriginalKeys(hdr)
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['E2DSFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_INCCFMASK'],
                               value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add CCF keys
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s')
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CRVAL'],
                               value=loc['RV_CCF'][0])
    # the rv step
    rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_RV'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_WMREF'],
                               value=loc['WMEANREF'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_LINES'],
                               value=np.nansum(loc['TOT_LINE']))
    # add berv values
    hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_BERV_MAX'],
                               value=loc['BERV_MAX'])
    # write image and add header keys (via hdict)
    p = spirouImage.WriteImage(p, corfile, data, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Пример #3
0
def part2test(p, loc):
    # ------------------------------------------------------------------
    # Fit wavelength solution on identified lines (using Littrow)
    # ------------------------------------------------------------------
    # log message
    wmsg = ('On fiber {0} fitting wavelength solution on identified '
            'lines: (second pass)')
    WLOG(p, '', wmsg.format(p['FIBER']))
    # fit lines
    start, end = p['IC_HC_N_ORD_START_2'], p['IC_HC_N_ORD_FINAL_2']
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------
    ckwargs = dict(ll=loc['LL_OUT_2'], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # ------------------------------------------------------------------
    # Plot wave solution littrow check
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)
    # ------------------------------------------------------------------

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-24 and 25-36 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    # check for infinites and NaNs in X_MEAN_2
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
    # iterate through Littrow test cut values
    # for x_it in range(len(loc['X_CUT_POINTS_2'])):
    for x_it in range(1, len(loc['X_CUT_POINTS_2']), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_2'][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_2'][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_2'][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_2'][x_it])
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f})')
            fargs = [x_cut_point, min_littrow, max_littrow, dev_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile1 = os.path.basename(p['HCFILES'][0])
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_FP(p)
    wavefitsname = os.path.split(wavefits)[-1]
    WLOG(p, '', wavefits)

    # log progress
    wargs = [p['FIBER'], wavefitsname]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    # add quality control
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])
    # write original E2DS file and add header keys (via hdict)
    # spirouImage.WriteImage(p['FITSFILENAME'], loc['HCDATA'], hdict)

    # write the wave "spectrum"
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p)

    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_iterations = int(np.nansum(loc['X_ITER_2'][:, 2]))
    err = 1000 * np.sqrt(final_var / num_iterations)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_2'])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_FP(p)
    wavetblname = os.path.split(wavetbl)[-1]
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L0', 'rms_L1', 'rms_L2'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var], [num_iterations],
                    [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]
    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    # if p['QC']:
    #     # set the wave key
    #     keydb = 'WAVE_{0}'.format(p['FIBER'])
    #     # copy wave file to calibDB folder
    #     spirouDB.PutFile(p, wavefits)
    #     # update the master calib DB file with new key
    #     spirouDB.UpdateMaster(p, keydb, wavefitsname, loc['HCHDR'])
    #
    #     # set the hcref key
    #     keydb = 'HCREF_{0}'.format(p['FIBER'])
    #     # copy wave file to calibDB folder
    #     spirouDB.PutFile(p, e2dscopy_filename)
    #     # update the master calib DB file with new key
    #     e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
    #     spirouDB.UpdateMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # return p and loc
    return p, loc
def main(night_name=None, files=None, fiber_type=None, **kwargs):
    """
    cal_DRIFT_E2DS_spirou.py main function, if night_name and files are
    None uses arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param fiber_type: string, if None does all fiber types (defined in
                       constants_SPIROU FIBER_TYPES (default is AB, A, B, C
                       if defined then only does this fiber type (but must
                       be in FIBER_TYPES)
    :param kwargs: any keyword to overwrite constant in param dict "p"

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # deal with fiber type
    if fiber_type is None:
        fiber_type = p['FIBER_TYPES']
    if type(fiber_type) == str:
        if fiber_type.upper() == 'ALL':
            fiber_type = p['FIBER_TYPES']
        elif fiber_type in p['FIBER_TYPES']:
            fiber_type = [fiber_type]
        else:
            emsg = 'fiber_type="{0}" not understood'
            WLOG(p, 'error', emsg.format(fiber_type))
    # set fiber type
    p['FIB_TYPE'] = fiber_type
    p.set_source('FIB_TYPE', __NAME__ + '__main__()')
    # Overwrite keys from source
    for kwarg in kwargs:
        p[kwarg] = kwargs[kwarg]

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # now change the value of sigdet if require
    if p['IC_EXT_SIGDET'] > 0:
        p['SIGDET'] = float(p['IC_EXT_SIGDET'])
    # get DPRTYPE from header (Will have it if valid)
    p = spirouImage.ReadParam(p, hdr, 'KW_DPRTYPE', required=False, dtype=str)
    # check the DPRTYPE is not None
    if (p['DPRTYPE'] == 'None') or (['DPRTYPE'] is None):
        emsg1 = 'Error: {0} is not set in header for file {1}'
        eargs = [p['KW_DPRTYPE'][0], p['FITSFILENAME']]
        emsg2 = '\tPlease run pre-processing on file.'
        emsg3 = ('\tIf pre-processing fails or skips file, file is not '
                 'currrently as valid DRS fits file.')
        WLOG(p, 'error', [emsg1.format(*eargs), emsg2, emsg3])
    else:
        p['DPRTYPE'] = p['DPRTYPE'].strip()

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    p, datac = spirouImage.CorrectForDark(p, data, hdr)

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to ADU
    data = spirouImage.ConvertToADU(spirouImage.FlipImage(p, datac), p=p)
    # convert NaN to zeros
    data0 = np.where(~np.isfinite(data), np.zeros_like(data), data)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data1 = spirouImage.ResizeImage(p, data0, **bkwargs)
    # log change in data size
    wmsg = 'Image format changed to {1}x{0}'
    WLOG(p, '', wmsg.format(*data1.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    p, data1 = spirouImage.CorrectForBadPix(p, data1, hdr)

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.sum(~np.isfinite(data1))
    n_bad_pix_frac = n_bad_pix * 100 / np.product(data1.shape)
    # Log number
    wmsg = 'Nb dead pixels = {0} / {1:.4f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Get the miny, maxy and max_signal for the central column
    # ----------------------------------------------------------------------
    # get the central column
    y = data1[p['IC_CENT_COL'], :]
    # get the min max and max signal using box smoothed approach
    miny, maxy, max_signal, diff_maxmin = spirouBACK.MeasureMinMaxSignal(p, y)
    # Log max average flux/pixel
    wmsg = 'Maximum average flux/pixel in the spectrum: {0:.1f} [ADU]'
    WLOG(p, 'info', wmsg.format(max_signal / p['NBFRAMES']))

    # ----------------------------------------------------------------------
    # Background computation
    # ----------------------------------------------------------------------
    if p['IC_DO_BKGR_SUBTRACTION']:
        # log that we are doing background measurement
        WLOG(p, '', 'Doing background measurement on raw frame')
        # get the bkgr measurement
        bargs = [p, data1, hdr]
        # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs)
        p, background = spirouBACK.MeasureBackgroundMap(*bargs)
    else:
        background = np.zeros_like(data1)
        p['BKGRDFILE'] = 'None'
        p.set_source('BKGRDFILE', __NAME__ + '.main()')
    # apply background correction to data (and set to zero where negative)
    data1 = data1 - background

    # ----------------------------------------------------------------------
    # Read tilt slit angle
    # ----------------------------------------------------------------------
    # define loc storage parameter dictionary
    loc = ParamDict()
    # get tilts (if the mode requires it)
    if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES:
        p, loc['TILT'] = spirouImage.ReadTiltFile(p, hdr)
        loc.set_source('TILT',
                       __NAME__ + '/main() + /spirouImage.ReadTiltFile')
    else:
        loc['TILT'] = None
        loc.set_source('TILT', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Get all fiber data (for all fibers)
    # ----------------------------------------------------------------------
    # TODO: This is temp solution for options 5a and 5b
    loc_fibers = spirouLOCOR.GetFiberData(p, hdr)

    # ------------------------------------------------------------------
    # Deal with debananafication
    # ------------------------------------------------------------------
    # if mode 4a or 4b we need to straighten in x only
    if p['IC_EXTRACT_TYPE'] in ['4a', '4b']:
        # get the shape parameters
        p, shapem_x = spirouImage.GetShapeX(p, hdr)
        p, shape_local = spirouImage.GetShapeLocal(p, hdr)
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # apply shape transforms
        targs = dict(lin_transform_vect=shape_local, dxmap=shapem_x)
        data2 = spirouImage.EATransform(data1, **targs)

    # if mode 5a or 5b we need to straighten in x and y using the
    #     polynomial fits for location
    elif p['IC_EXTRACT_TYPE'] in ['5a', '5b']:
        # get the shape parameters
        p, shapem_x = spirouImage.GetShapeX(p, hdr)
        p, shapem_y = spirouImage.GetShapeY(p, hdr)
        p, shape_local = spirouImage.GetShapeLocal(p, hdr)
        p, fpmaster = spirouImage.GetFPMaster(p, hdr)
        # get the bad pixel map
        bkwargs = dict(return_map=True, quiet=True)
        p, badpix = spirouImage.CorrectForBadPix(p, data1, hdr, **bkwargs)
        # log progress
        WLOG(p, '', 'Cleaning image')
        # clean the image
        data1 = spirouEXTOR.CleanHotpix(data1, badpix)
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # apply shape transforms
        targs = dict(lin_transform_vect=shape_local,
                     dxmap=shapem_x,
                     dymap=shapem_y)
        data2 = spirouImage.EATransform(data1, **targs)
    # in any other mode we do not straighten
    else:
        data2 = np.array(data1)

    # ----------------------------------------------------------------------
    # Fiber loop
    # ----------------------------------------------------------------------
    # loop around fiber types
    for fiber in p['FIB_TYPE']:
        # set fiber
        p['FIBER'] = fiber
        p.set_source('FIBER', __NAME__ + '/main()()')

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # set source of wave file
        wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
        # Force A and B to AB solution
        if fiber in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = fiber
        # get wave image
        wkwargs = dict(hdr=hdr,
                       return_wavemap=True,
                       return_filename=True,
                       return_header=True,
                       fiber=wave_fiber)
        wout = spirouImage.GetWaveSolution(p, **wkwargs)
        loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'] = wout[:3]
        loc['WAVEHDR'], loc['WSOURCE'] = wout[3:]
        source_names = ['WAVE', 'WAVEFILE', 'WAVEPARAMS', 'WAVEHDR']
        loc.set_sources(source_names, wsource)
        # get dates
        loc['WAVE_ACQTIMES'] = spirouDB.GetTimes(p, loc['WAVEHDR'])
        loc.set_source('WAVE_ACQTIMES', __NAME__ + '.main()')
        # get the recipe that produced the wave solution
        if 'WAVECODE' in loc['WAVEHDR']:
            loc['WAVE_CODE'] = loc['WAVEHDR']['WAVECODE']
        else:
            loc['WAVE_CODE'] = 'UNKNOWN'
        loc.set_source('WAVE_CODE', __NAME__ + '.main()')

        # ----------------------------------------------------------------------
        # Get WFP keys
        # ----------------------------------------------------------------------
        # Read the WFP keys - if they don't exist set to None and deal
        #    with later
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_DRIFT',
                                  name='WFP_DRIFT',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_FWHM',
                                  name='WFP_FWHM',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_CONTRAST',
                                  name='WFP_CONTRAST',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_MAXCPP',
                                  name='WFP_MAXCPP',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_MASK',
                                  name='WFP_MASK',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_LINES',
                                  name='WFP_LINES',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_TARG_RV',
                                  name='WFP_TARG_RV',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_WIDTH',
                                  name='WFP_WIDTH',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_STEP',
                                  name='WFP_STEP',
                                  required=False)

        # ----------------------------------------------------------------------
        # Read Flat file
        # ----------------------------------------------------------------------
        fout = spirouImage.ReadFlatFile(p, hdr, return_header=True)
        p, loc['FLAT'], flathdr = fout
        loc.set_source('FLAT',
                       __NAME__ + '/main() + /spirouImage.ReadFlatFile')
        # get flat extraction mode
        if p['KW_E2DS_EXTM'][0] in flathdr:
            flat_ext_mode = flathdr[p['KW_E2DS_EXTM'][0]]
        else:
            flat_ext_mode = None

        # ------------------------------------------------------------------
        # Check extraction method is same as flat extraction method
        # ------------------------------------------------------------------
        # get extraction method and function
        extmethod, extfunc = spirouEXTOR.GetExtMethod(p, p['IC_EXTRACT_TYPE'])
        if not DEBUG:
            # compare flat extraction mode to extraction mode
            spirouEXTOR.CompareExtMethod(p, flat_ext_mode, extmethod, 'FLAT',
                                         'EXTRACTION')
        # ------------------------------------------------------------------
        # Read Blaze file
        # ------------------------------------------------------------------
        p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
        blazesource = __NAME__ + '/main() + /spirouImage.ReadBlazeFile'
        loc.set_source('BLAZE', blazesource)

        # ------------------------------------------------------------------
        # Get fiber specific parameters from loc_fibers
        # ------------------------------------------------------------------
        # get this fibers parameters
        p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
        # get localisation parameters
        for key in loc_fibers[fiber]:
            loc[key] = loc_fibers[fiber][key]
            loc.set_source(key, loc_fibers[fiber].sources[key])
        # get locofile source
        p['LOCOFILE'] = loc['LOCOFILE']
        p.set_source('LOCOFILE', loc.sources['LOCOFILE'])
        # get the order_profile
        order_profile = loc_fibers[fiber]['ORDER_PROFILE']

        # ------------------------------------------------------------------
        # Set up Extract storage
        # ------------------------------------------------------------------
        # Create array to store extraction (for each order and each pixel
        # along order)
        loc['E2DS'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['E2DSFF'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['E2DSLL'] = []
        loc['SPE1'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE3'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE4'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE5'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        # Create array to store the signal to noise ratios for each order
        loc['SNR'] = np.zeros(loc['NUMBER_ORDERS'])

        # ------------------------------------------------------------------
        # Extract orders
        # ------------------------------------------------------------------
        # source for parameter dictionary
        source = __NAME__ + '/main()'
        # get limits of order extraction
        valid_orders = spirouEXTOR.GetValidOrders(p, loc)
        # loop around each order
        for order_num in valid_orders:
            # -------------------------------------------------------------
            # IC_EXTRACT_TYPE decides the extraction routine
            # -------------------------------------------------------------
            eargs = [p, loc, data2, order_num]
            ekwargs = dict(mode=p['IC_EXTRACT_TYPE'],
                           order_profile=order_profile)
            with warnings.catch_warnings(record=True) as w:
                eout = spirouEXTOR.Extraction(*eargs, **ekwargs)
            # deal with different return
            if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
                e2ds, e2dsll, cpt = eout
            else:
                e2ds, cpt = eout
                e2dsll = None
            # -------------------------------------------------------------
            # calculate the noise
            range1, range2 = p['IC_EXT_RANGE1'], p['IC_EXT_RANGE2']
            # set the noise
            noise = p['SIGDET'] * np.sqrt(range1 + range2)
            # get window size
            blaze_win1 = int(data2.shape[0] / 2) - p['IC_EXTFBLAZ']
            blaze_win2 = int(data2.shape[0] / 2) + p['IC_EXTFBLAZ']
            # get average flux per pixel
            flux = np.nansum(
                e2ds[blaze_win1:blaze_win2]) / (2 * p['IC_EXTFBLAZ'])
            # calculate signal to noise ratio = flux/sqrt(flux + noise^2)
            snr = flux / np.sqrt(flux + noise**2)
            # log the SNR RMS
            wmsg = 'On fiber {0} order {1}: S/N= {2:.1f} Nbcosmic= {3}'
            wargs = [p['FIBER'], order_num, snr, cpt]
            WLOG(p, '', wmsg.format(*wargs))
            # add calculations to storage
            loc['E2DS'][order_num] = e2ds
            loc['E2DSFF'][order_num] = e2ds / loc['FLAT'][order_num]
            loc['SNR'][order_num] = snr
            # save the longfile
            if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
                loc['E2DSLL'].append(e2dsll)
            # set sources
            loc.set_sources(['e2ds', 'SNR'], source)
            # Log if saturation level reached
            satvalue = (flux / p['GAIN']) / (range1 + range2)
            if satvalue > (p['QC_LOC_FLUMAX'] * p['NBFRAMES']):
                wmsg = 'SATURATION LEVEL REACHED on Fiber {0} order={1}'
                WLOG(p, 'warning', wmsg.format(fiber, order_num))

        # ------------------------------------------------------------------
        # Thermal correction
        # ------------------------------------------------------------------
        # get fiber type
        if fiber in ['AB', 'A', 'B']:
            fibertype = p['DPRTYPE'].split('_')[0]
        else:
            fibertype = p['DPRTYPE'].split('_')[1]

        # apply thermal correction based on fiber type
        if fibertype in p['THERMAL_CORRECTION_TYPE1']:
            # log progress
            wmsg = 'Correcting thermal background for {0}={1} mode={2}'
            wargs = [fiber, fibertype, 1]
            WLOG(p, 'info', wmsg.format(*wargs))
            # correct E2DS
            tkwargs = dict(image=loc['E2DS'], mode=1, fiber=fiber, hdr=hdr)
            p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs)
            # correct E2DSFF
            tkwargs = dict(image=loc['E2DSFF'],
                           mode=1,
                           fiber=fiber,
                           hdr=hdr,
                           flat=loc['FLAT'])
            p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs)
        elif fibertype in p['THERMAL_CORRECTION_TYPE2']:
            # log progress
            wmsg = 'Correcting thermal background for {0}={1} mode={2}'
            wargs = [fiber, fibertype, 2]
            WLOG(p, 'info', wmsg.format(*wargs))
            # correct E2DS
            tkwargs = dict(image=loc['E2DS'], mode=2, fiber=fiber, hdr=hdr)
            p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs)
            # correct E2DSFF
            tkwargs = dict(image=loc['E2DSFF'],
                           mode=2,
                           fiber=fiber,
                           hdr=hdr,
                           flat=loc['FLAT'])
            p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs)
        else:
            # log progress
            wmsg = 'Not correcting thermal background for {0}={1}'
            wargs = [fiber, fibertype]
            WLOG(p, 'info', wmsg.format(*wargs))
            # set filename for output
            outfile = 'THERMALFILE_{0}'.format(fiber)
            p[outfile] = 'None'
            p.set_source(outfile, __NAME__ + '.main()')

        # ------------------------------------------------------------------
        # Plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # start interactive session if needed
            sPlt.start_interactive_session(p)
            # plot all orders or one order
            if p['IC_FF_PLOT_ALL_ORDERS']:
                # plot image with all order fits (slower)
                sPlt.ext_aorder_fit(p, loc, data1, max_signal / 10.)
            else:
                # plot image with selected order fit and edge fit (faster)
                sPlt.ext_sorder_fit(p, loc, data1, max_signal / 10.)
            # plot e2ds against wavelength
            sPlt.ext_spectral_order_plot(p, loc)

            if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
                sPlt.ext_debanana_plot(p, loc, data2, max_signal / 10.)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # if array is completely NaNs it shouldn't pass
        if np.sum(np.isfinite(loc['E2DS'])) == 0:
            fail_msg.append('E2DS image is all NaNs')
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append('NaN')
        qc_names.append('image')
        qc_logic.append('image is all NaN')
        # ----------------------------------------------------------------------
        # saturation check: check that the max_signal is lower than
        # qc_max_signal
        max_qcflux = p['QC_MAX_SIGNAL'] * p['NBFRAMES']
        if max_signal > max_qcflux:
            fmsg = 'Too much flux in the image ({0:.2f} > {1:.2f})'
            fail_msg.append(fmsg.format(max_signal, max_qcflux))
            passed = False
            # Question: Why is this test ignored?
            # For some reason this test is ignored in old code
            passed = True
            WLOG(p, 'info', fail_msg[-1])
            qc_pass.append(0)
        else:
            qc_pass.append(1)

        # add to qc header lists
        qc_values.append(max_signal)
        qc_names.append('max_signal')
        qc_logic.append('QC_MAX_SIGNAL > {0:.3f}'.format(max_qcflux))

        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Store extraction in file(s)
        # ------------------------------------------------------------------
        raw_ext_file = os.path.basename(p['FITSFILENAME'])
        # construct filename
        e2dsfits, tag1 = spirouConfig.Constants.EXTRACT_E2DS_FILE(p)
        e2dsfitsname = os.path.split(e2dsfits)[-1]
        e2dsfffits, tag2 = spirouConfig.Constants.EXTRACT_E2DSFF_FILE(p)
        e2dsfffitsname = os.path.split(e2dsfffits)[-1]
        e2dsllfits, tag4 = spirouConfig.Constants.EXTRACT_E2DSLL_FILE(p)
        e2dsfllitsname = os.path.split(e2dsllfits)[-1]
        # log that we are saving E2DS spectrum
        wmsg = 'Saving E2DS spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], e2dsfitsname))
        wmsg = 'Saving E2DSFF spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], e2dsfffitsname))
        # add keys from original header file
        hdict = spirouImage.CopyOriginalKeys(hdr)
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_FIBER'], value=p['FIBER'])

        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBDARK'],
                                   value=p['DARKFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBAD'],
                                   value=p['BADPFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBLOCO'],
                                   value=p['LOCOFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBACK'],
                                   value=p['BKGRDFILE'])
        if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES:
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBTILT'],
                                       value=p['TILTFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBFLAT'],
                                   value=p['FLATFILE'])
        if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPEX'],
                                       value=p['SHAPEXFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPEY'],
                                       value=p['SHAPEYFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPE'],
                                       value=p['SHAPEFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBFPMASTER'],
                                       value=p['FPMASTERFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBTHERMAL'],
                                   value=p['THERMALFILE_{0}'.format(fiber)])

        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # construct loco filename
        locofile, _ = spirouConfig.Constants.EXTRACT_LOCO_FILE(p)
        locofilename = os.path.basename(locofile)
        # add barycentric keys to header
        hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_MAX'],
                                   value=loc['BERV_MAX'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_B_OBS_HOUR'],
                                   value=loc['BERVHOUR'])
        # add barycentric estimate keys to header
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_EST'],
                                   value=loc['BERV_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BJD_EST'],
                                   value=loc['BJD_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_MAX_EST'],
                                   value=loc['BERV_MAX_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_SOURCE'],
                                   value=loc['BERV_SOURCE'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # copy extraction method and function to header
        #     (for reproducibility)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_E2DS_EXTM'],
                                   value=extmethod)
        hdict = spirouImage.AddKey(p, hdict, p['KW_E2DS_FUNC'], value=extfunc)
        # add localization file name to header
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_LOCO_FILE'],
                                   value=locofilename)
        # add wave solution date
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME1'],
                                   value=loc['WAVE_ACQTIMES'][0])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME2'],
                                   value=loc['WAVE_ACQTIMES'][1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_ORD_N'],
                                   value=loc['WAVEPARAMS'].shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_LL_DEG'],
                                   value=loc['WAVEPARAMS'].shape[1] - 1)
        # -------------------------------------------------------------------------
        # add keys of the wave solution FP CCF
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FILE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_DRIFT'],
                                   value=p['WFP_DRIFT'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FWHM'],
                                   value=p['WFP_FWHM'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_CONTRAST'],
                                   value=p['WFP_CONTRAST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MAXCPP'],
                                   value=p['WFP_MAXCPP'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MASK'],
                                   value=p['WFP_MASK'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_LINES'],
                                   value=p['WFP_LINES'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_TARG_RV'],
                                   value=p['WFP_TARG_RV'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_WIDTH'],
                                   value=p['WFP_WIDTH'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_STEP'],
                                   value=p['WFP_STEP'])

        # write 1D list of the SNR
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_E2DS_SNR'],
                                         values=loc['SNR'])
        # add localization file keys to header
        root = p['KW_ROOT_DRS_LOC'][0]
        hdict = spirouImage.CopyRootKeys(p, hdict, locofile, root=root)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p,
                                         hdict,
                                         p['KW_WAVE_PARAM'],
                                         values=loc['WAVEPARAMS'])
        # Save E2DS file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        p = spirouImage.WriteImage(p, e2dsfits, loc['E2DS'], hdict)
        # Save E2DSFF file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        p = spirouImage.WriteImage(p, e2dsfffits, loc['E2DSFF'], hdict)
        # Save E2DSLL file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
            llstack = np.vstack(loc['E2DSLL'])
            p = spirouImage.WriteImage(p, e2dsllfits, llstack, hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in wavelength)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']]
        # get 1D spectrum
        xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1)
        # construct file name
        s1dfile1, tag3 = spirouConfig.Constants.EXTRACT_S1D_FILE1(p)
        s1dfilename1 = os.path.basename(s1dfile1)
        # add header keys
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in wavelength) for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename1))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d1, ys1d1, np.zeros_like(ys1d1)]
        units = ['nm', None, None]
        s1d1 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in velocity)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']]
        # get 1D spectrum
        xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2)
        # construct file name
        s1dfile2, tag4 = spirouConfig.Constants.EXTRACT_S1D_FILE2(p)
        s1dfilename2 = os.path.basename(s1dfile2)
        # add header keys
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in velocity) for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename2))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d2, ys1d2, np.zeros_like(ys1d2)]
        units = ['nm', None, None]
        s1d2 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, quiet=False):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, mainfitsdir='reduced')

    # check that we have a night_name
    if p['ARG_NIGHT_NAME'] == '':
        # get available night_names
        nightnames = spirouStartup.GetNightDirs(p)

        emsgs = [
            'Must define night name. Input should be:',
            '\t >> {0} [NIGHT_NAME]'.format(__NAME__), ' ',
            'Some available NIGHT_NAMES are as follows:'
        ]
        # loop around night names and add to message
        for nightname in nightnames:
            emsgs.append('\t {0}'.format(nightname))
        # log message
        WLOG(p, 'error', emsgs)

    # ----------------------------------------------------------------------
    # Check if we have an index file
    # ----------------------------------------------------------------------
    # get expected index file name and location
    index_file = spirouConfig.Constants.INDEX_OUTPUT_FILENAME()
    path = p['ARG_FILE_DIR']
    index_path = os.path.join(path, index_file)
    # get expected columns
    columns = spirouConfig.Constants.REDUC_OUTPUT_COLUMNS(p)
    # create storage
    loc = OrderedDict()
    # if file exists then we have some indexed files
    if os.path.exists(index_path):
        rawloc = spirouImage.ReadFitsTable(p, index_path)
        loc['FILENAME'] = list(rawloc['FILENAME'])
        loc['LAST_MODIFIED'] = list(rawloc['LAST_MODIFIED'])
        for col in columns:
            loc[col] = list(rawloc[col])
    # else we have to create this file
    else:
        loc['FILENAME'] = []
        loc['LAST_MODIFIED'] = []
        # loop around columns and add blank list to each
        for col in columns:
            loc[col] = []

    # ----------------------------------------------------------------------
    # Get all files in raw night_name directory
    # ----------------------------------------------------------------------
    # get all files in DRS_DATA_RAW/ARG_NIGHT_NAME
    files = os.listdir(p['ARG_FILE_DIR'])
    # sort file by name
    files = np.sort(files)

    # ----------------------------------------------------------------------
    # Loop around all files and extract required header keys
    # ----------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Analysing {0} files'.format(len(files)))
    # loop around files and extract properties
    for filename in files:
        # skip any non-fits file files
        if '.fits' not in filename:
            continue
        # skip the index file
        if filename == os.path.basename(index_file):
            continue
        # if already in loc['FILENAME'] then skip
        if filename in loc['FILENAME']:
            continue
        # construct absolute path for file
        fitsfilename = os.path.join(p['ARG_FILE_DIR'], filename)
        # read file header
        hdr = spirouImage.ReadHeader(p, filepath=fitsfilename)
        # add filename
        loc['FILENAME'].append(filename)
        loc['LAST_MODIFIED'].append(os.path.getmtime(fitsfilename))
        # loop around columns and look for key in header
        for col in columns:
            # get value from header
            if col in hdr:
                value = str(hdr[col])
            else:
                value = '--'
            # push into loc
            loc[col].append(value)

    # Make sure we have some files
    if len(loc['FILENAME']) == 0:
        wmsg = 'No pre-processed (*{0}) files present.'
        WLOG(p, 'warning', wmsg.format(p['PROCESSED_SUFFIX']))

    # ----------------------------------------------------------------------
    # archive to table
    # ----------------------------------------------------------------------
    if len(loc['FILENAME']) != 0:
        # construct table filename
        outfile = spirouConfig.Constants.OFF_LISTING_REDUC_FILE(p)
        # log progress
        WLOG(p, '', 'Creating ascii file for listing.')
        # get column names
        colnames = ['FILENAME', 'LAST_MODIFIED'] + list(columns)
        # define the format for each column
        formats = [None] * len(colnames)
        # get the values for each column
        values = []
        for col in colnames:
            values.append(loc[col])
        # construct astropy table from column names, values and formats
        table = spirouImage.MakeTable(p, colnames, values, formats)
        # save table to file
        spirouImage.WriteTable(p, table, outfile, fmt='ascii.rst')

        # log saving of file
        if not quiet:
            wmsg = 'Listing of directory on file {0}'
            WLOG(p, '', wmsg.format(outfile))

            # print out to screen
            WLOG(p, '', '')
            WLOG(p, '', 'Listing table:')
            WLOG(p, '', '')
            spirouImage.PrintTable(p, table)

    # ----------------------------------------------------------------------
    # Update Index
    # ----------------------------------------------------------------------
    spirouStartup.SortSaveOutputs(p, loc, index_path)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p, outputs=None)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Пример #6
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # manually set OBJNAME to FP
    p['OBJNAME'] = 'FP'

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # # get wave image
    # wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber,
    #                                    return_wavemap=True)
    # _, loc['WAVE'] = wout
    # loc.set_source('WAVE', __NAME__+'/main() + /spirouImage.GetWaveSolution')

    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        # sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['SPEREF'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    # run the RV coravelation function with these parameters
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # get the reference RV in m/s
    rvref = loc['RV'] * 1000.

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['MDRIFT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # set loc sources
    keys = ['mdrift', 'merrdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for reference file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE_LL']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmeanspe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ----------------------------------------------------------------------
        # Do correlation
        # ----------------------------------------------------------------------
        # calculate and fit the CCF
        loc['E2DSFF'] = loc['SPE'] * 1.
        loc.set_source('E2DSFF', __NAME__ + '/main()')

        loc = spirouRV.Coravelation(p, loc)

        # ----------------------------------------------------------------------
        # Correlation stats
        # ----------------------------------------------------------------------
        # get the maximum number of orders to use
        nbmax = p['CCF_NUM_ORDERS_MAX']
        # get the average ccf
        loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
        # normalize the average ccf
        normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
        # get the fit for the normalized average ccf
        ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                           loc['RV_CCF'],
                                           normalized_ccf,
                                           fit_type=1)
        # calculate the mean RV
        meanrv = ccf_res[1] * 1000. - rvref
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24

        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = ('Time from ref= {0:.2f} h '
                '- Flux Ratio= {1:.2f} '
                '- Drift mean= {2:.2f} +- '
                '{3:.2f} m/s')
        wargs = [deltatime, loc['FLUXRATIO'][i_it], meanrv, merr]
        WLOG(p, '', wmsg.format(*wargs))
        # add this iteration to storage
        loc['MDRIFT'][i_it] = meanrv
        loc['MERRDRIFT'][i_it] = merr
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # # get raw input file name
    # raw_infile = os.path.basename(p['REFFILE'])
    # # construct filename
    # driftfits, tag = spirouConfig.Constants.DRIFTCCF_E2DS_FITS_FILE(p)
    # driftfitsname = os.path.split(driftfits)[-1]
    # # log that we are saving drift values
    # wmsg = 'Saving drift values of Fiber {0} in {1}'
    # WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # # add keys from original header file
    # hdict = spirouImage.CopyOriginalKeys(hdr)
    # # add the reference RV
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REF_RV'], value=rvref)
    #
    # # set the version
    # hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # # set the input files
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    # # save drift values
    # p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTCCF_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_WAVE_E2DS.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # test files TC2
    # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/'
    # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits'
    # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits']

    # test files TC3
    # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/'
    # fpfile = '2294108a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294115c_pp_e2dsff_AB.fits']

    # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/'
    # fpfile = '2294223a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294230c_pp_e2dsff_AB.fits']

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # TODO: ------------------------------------------------------------
    # TODO remove to test NaNs
    # TODO: ------------------------------------------------------------
    # hcmask = np.isfinite(hcdata)
    # fpmask = np.isfinite(fpdata)
    # hcdata[~hcmask] = 0.0
    # fpdata[~fpmask] = 0.0
    # TODO: ------------------------------------------------------------

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr

    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later)
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['ll_line', 'ampl_line'], source)

    # ----------------------------------------------------------------------
    # Generate wave map from wave solution
    # ----------------------------------------------------------------------
    loc = spirouWAVE.generate_wave_map(p, loc)

    # ----------------------------------------------------------------------
    # Find Gaussian Peaks in HC spectrum
    # ----------------------------------------------------------------------
    loc = spirouWAVE.find_hc_gauss_peaks(p, loc)

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Fit Gaussian peaks (in triplets) to
    # ----------------------------------------------------------------------
    loc = spirouWAVE.fit_gaussian_triplets(p, loc)

    # ----------------------------------------------------------------------
    # Generate Resolution map and line profiles
    # ----------------------------------------------------------------------
    # log progress
    wmsg = 'Generating resolution map and '
    # generate resolution map
    loc = spirouWAVE.generate_resolution_map(p, loc)
    # map line profile map
    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_line_profiles(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    if p['DRS_PLOT'] > 0:
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Set up all_lines storage
    # ----------------------------------------------------------------------

    # initialise up all_lines storage
    all_lines_1 = []

    # get parameters from p
    n_ord_start = p['IC_HC_N_ORD_START_2']
    n_ord_final = p['IC_HC_N_ORD_FINAL_2']
    pixel_shift_inter = p['PIXEL_SHIFT_INTER']
    pixel_shift_slope = p['PIXEL_SHIFT_SLOPE']

    # get values from loc
    xgau = np.array(loc['XGAU_T'])
    dv = np.array(loc['DV_T'])
    fit_per_order = np.array(loc['POLY_WAVE_SOL'])
    ew = np.array(loc['EW_T'])
    peak = np.array(loc['PEAK_T'])
    amp_catalog = np.array(loc['AMP_CATALOG'])
    wave_catalog = np.array(loc['WAVE_CATALOG'])
    ord_t = np.array(loc['ORD_T'])

    # loop through orders
    for iord in range(n_ord_start, n_ord_final):
        # keep relevant lines
        # -> right order
        # -> finite dv
        gg = (ord_t == iord) & (np.isfinite(dv))
        nlines = np.nansum(gg)
        # put lines into ALL_LINES structure
        # reminder:
        # gparams[0] = output wavelengths
        # gparams[1] = output sigma(gauss fit width)
        # gparams[2] = output amplitude(gauss fit)
        # gparams[3] = difference in input / output wavelength
        # gparams[4] = input amplitudes
        # gparams[5] = output pixel positions
        # gparams[6] = output pixel sigma width (gauss fit width in pixels)
        # gparams[7] = output weights for the pixel position

        chebval = np.polynomial.chebyshev.chebval

        # dummy array for weights
        test = np.ones(np.shape(xgau[gg]), 'd') * 1e4
        # get the final wavelength value for each peak in order
        output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg])
        # output_wave_1 = chebval(xgau[gg], fit_per_order[iord])
        # convert the pixel equivalent width to wavelength units
        xgau_ew_ini = xgau[gg] - ew[gg] / 2
        xgau_ew_fin = xgau[gg] + ew[gg] / 2
        ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini)
        ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin)
        # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord])
        # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord])
        ew_ll = ew_ll_fin - ew_ll_ini
        # put all lines in the order into array
        gau_params = np.column_stack(
            (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1,
             amp_catalog[gg], xgau[gg], ew[gg], test))
        # append the array for the order into a list
        all_lines_1.append(gau_params)
        # save dv in km/s and auxiliary order number
        # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/
        #                        output_wave_1))
        # ord_save = np.concatenate((ord_save, test*iord))

    # add to loc
    loc['ALL_LINES_1'] = all_lines_1
    loc['LL_PARAM_1'] = np.array(fit_per_order)
    loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2'])
    loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()')

    # For compatibility w/already defined functions, I need to save
    # here all_lines_2
    all_lines_2 = list(all_lines_1)
    loc['ALL_LINES_2'] = all_lines_2
    # loc['LL_PARAM_2'] = np.fliplr(fit_per_order)
    # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2'])
    # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------

    start = p['IC_LITTROW_ORDER_INIT_1']
    end = p['IC_LITTROW_ORDER_FINAL_1']

    # calculate echelle orders
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # reset Littrow fit degree
    p['IC_LITTROW_FIT_DEG_1'] = 7

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # Incorporate FP into solution
    # ------------------------------------------------------------------
    # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration)
    loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1'])
    loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1'])
    # only use FP if switched on in constants file
    if p['IC_WAVE_USE_FP']:
        # ------------------------------------------------------------------
        # Find FP lines
        # ------------------------------------------------------------------
        # print message to screen
        wmsg = 'Identification of lines in reference file: {0}'
        WLOG(p, '', wmsg.format(fpfile))

        # ------------------------------------------------------------------
        # Get the FP solution
        # ------------------------------------------------------------------

        loc = spirouTHORCA.FPWaveSolutionNew(p, loc)

        # ------------------------------------------------------------------
        # FP solution plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # Plot the FP extracted spectrum against wavelength solution
            sPlt.wave_plot_final_fp_order(p, loc, iteration=1)
            # Plot the measured FP cavity width offset against line number
            sPlt.wave_local_width_offset_plot(p, loc)
            # Plot the FP line wavelength residuals
            sPlt.wave_fp_wavelength_residuals(p, loc)

    # ------------------------------------------------------------------
    # Create new wavelength solution
    # ------------------------------------------------------------------
    # TODO: Melissa fault - fix later
    p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'],
                                   p['IC_FP_N_ORD_START'])
    p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'],
                                   p['IC_FP_N_ORD_FINAL'])
    start = p['IC_HC_N_ORD_START_2']
    end = p['IC_HC_N_ORD_FINAL_2']

    # recalculate echelle orders for Fit1DSolution
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # select the orders to fit
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)
    # from here, LL_OUT_2 wil be 0-47

    # ------------------------------------------------------------------
    # Repeat Littrow test
    # ------------------------------------------------------------------
    start = p['IC_LITTROW_ORDER_INIT_2']
    end = p['IC_LITTROW_ORDER_FINAL_2']
    # recalculate echelle orders for Littrow check
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-47 and 47-49 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ------------------------------------------------------------------
    # Plot single order, wavelength-calibrated, with found lines
    # ------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_single_order(p, loc)

    # ----------------------------------------------------------------------
    # Do correlation on FP spectra
    # ----------------------------------------------------------------------

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for FP
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['FPDATA'], loc['LL_FINAL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']
    p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH']
    p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX']))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_source('blaze', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Do correlation on FP
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['FPDATA'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    loc['BERV'] = 0.0
    loc['BERV_MAX'] = 0.0
    loc['BJD'] = 0.0

    # run the RV coravelation function with these parameters
    loc['WAVE_LL'] = np.array(loc['LL_FINAL'])
    loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL'])
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Update the Correlation stats with values using fiber C (FP) drift
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()
    # set the source
    keys = [
        'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))
    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        p['OBJNAME'] = 'FP'
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # TODO : Add QC of the FP CCF

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # get parameters ffrom p
    p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
    p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check for infinites and NaNs in mean residuals from fit
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['X_MEAN_2'])
    qc_names.append('X_MEAN_2')
    qc_logic.append('X_MEAN_2 not finite')
    # ----------------------------------------------------------------------
    # iterate through Littrow test cut values
    lit_it = 2
    # checks every other value
    # TODO: This QC check (or set of QC checks needs re-writing it is
    # TODO:    nearly impossible to understand
    for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
        # get the corresponding order
        min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
        max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(sig_littrow)
        qc_names.append('sig_littrow')
        qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
        # ----------------------------------------------------------------------
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
            fargs = [
                x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                min_littrow_ord, max_littrow_ord
            ]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)

            # TODO: Should this be the QC header values?
            # TODO:   it does not change the outcome of QC (i.e. passed=False)
            # TODO:   So what is the point?
            # if sig was out of bounds, recalculate
            if sig_littrow > rms_littrow_max:
                # conditions
                check1 = min_littrow > dev_littrow_max
                check2 = max_littrow > dev_littrow_max
                # get the residuals
                respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                # check if both are out of bounds
                if check1 and check2:
                    # remove respective orders
                    worst_order = (min_littrow_ord, max_littrow_ord)
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if min is out of bounds
                elif check1:
                    # remove respective order
                    worst_order = min_littrow_ord
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if max is out of bounds
                elif check2:
                    # remove respective order
                    worst_order = max_littrow_ord
                    respix_2 = np.delete(respix, max_littrow_ord)
                    redo_sigma = True
                # else do not recalculate sigma
                else:
                    redo_sigma, respix_2, worst_order = False, None, None
                    wmsg = 'No outlying orders, sig littrow not recalculated'
                    fail_msg.append(wmsg.format())

                # if outlying order, recalculate stats
                if redo_sigma:
                    mean = np.nansum(respix_2) / len(respix_2)
                    mean2 = np.nansum(respix_2**2) / len(respix_2)
                    rms = np.sqrt(mean2 - mean**2)
                    if rms > rms_littrow_max:
                        fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        fail_msg.append(fmsg.format(*fargs))
                    else:
                        wargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        wmsg = ('Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fail_msg.append(wmsg.format(*wargs))
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.max([max_littrow, min_littrow]))
        qc_names.append('max or min littrow')
        qc_logic.append('max or min littrow > {0:.2f}'
                        ''.format(dev_littrow_max))
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name(s)
    raw_infiles1 = []
    for hcfile in p['HCFILES']:
        raw_infiles1.append(os.path.basename(hcfile))
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
    wavefitsname = os.path.split(wavefits)[-1]
    # log progress
    wargs = [p['FIBER'], wavefits]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='fpfile',
                                     values=p['FPFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='hcfile',
                                     values=p['HCFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])

    # add FP CCF drift
    # target RV and width
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_TARG_RV'],
                               value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_WIDTH'],
                               value=p['CCF_WIDTH'])
    # the rv step
    # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP'])

    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_DRIFT'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_LINES'],
                               value=np.nansum(loc['TOT_LINE']))

    # write the wave "spectrum"
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # only copy over if QC passed
    if p['QC']:
        # loop around hc files and update header with
        for hcfile in p['HCFILES']:
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
        # update fp file
        raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
        p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_lines = int(np.nansum(loc['X_ITER_2'][:, 2]))  # loc['X_ITER_2']
    err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
    wavetblname = os.path.basename(wavetbl)
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500',
        'rms_L3000', 'rms_L3500'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
        '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var],
                    [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                    [sig_littrow[5]], [sig_littrow[6]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    # TODO proper column values
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]

    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())
Пример #8
0
def output_lsd_image(p, loc, hdict):
    """
    Function to set up and save output FITS image to store LSD analyis.
        
    :param p: parameter dictionary, ParamDict containing constants
    :param loc: parameter dictionary, ParamDict to store data
        Must contain at least:
            loc['LSDDATA']: numpy array (2D), LSD analysis data
    :param hdict: dictionary, header dictionary of keywordstores
                  each key is the HEADER key and each value is a list of
                  two values: [HEADER value, HEADER comment]

    :return lsdfits, lsdfitsfitsname:
        lsdfits:         string, output full path
        lsdfitsfitsname: string, output filename
    """

    # construct file names
    lsdfits, tag = spirouConfig.Constants.LSD_POL_FILE(p, loc)
    lsdfitsfitsname = os.path.split(lsdfits)[-1]

    columns = ['velocities', 'stokesI', 'stokesI_model', 'stokesVQU', 'Null']
    values = [loc['LSD_VELOCITIES'], loc['LSD_STOKESI'],
              loc['LSD_STOKESI_MODEL'], loc['LSD_STOKESVQU'],
              loc['LSD_NULL']]


    # save all data into a single array for output FITS
    loc['LSDDATA'] = []
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_VELOCITIES'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI_MODEL'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESVQU'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_NULL'])

    # add LSD parameters keywords to header
    # add input parameters for LSD analysis
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_STOKES'], value=loc['STOKES'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MASK'],
                               value=loc['SELECTED_FILE_CCFLINES'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_V0'],
                               value=p['IC_POLAR_LSD_V0'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_VF'],
                               value=p['IC_POLAR_LSD_VF'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NP'],
                               value=p['IC_POLAR_LSD_NP'])

    # add fitted values from gaussian fit to Stokes I LSD
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RV'],
                               value=loc['LSD_FIT_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RESOL'],
                               value=loc['LSD_FIT_RESOL'])

    # add statistical quantities from LSD analysis
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEANPOL'],
                               value=loc['LSD_POL_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STDDEVPOL'],
                               value=loc['LSD_POL_STDDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDIANPOL'],
                               value=loc['LSD_POL_MEDIAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDABSDEVPOL'],
                               value=loc['LSD_POL_MEDABSDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_MEAN'],
                               value=loc['LSD_STOKESVQU_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_STDDEV'],
                               value=loc['LSD_STOKESVQU_STDDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_MEAN'],
                               value=loc['LSD_NULL_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_STDDEV'],
                               value=loc['LSD_NULL_STDDEV'])
    # add information about the meaning of data columns
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL1'],
                               value=p['IC_POLAR_LSD_DATAINFO'][0])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL2'],
                               value=p['IC_POLAR_LSD_DATAINFO'][1])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL3'],
                               value=p['IC_POLAR_LSD_DATAINFO'][2])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL4'],
                               value=p['IC_POLAR_LSD_DATAINFO'][3])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL5'],
                               value=p['IC_POLAR_LSD_DATAINFO'][4])

    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)

    # Store LSD analysis data in FITS TABLE
    table = spirouImage.MakeTable(p, columns, values)
    spirouImage.WriteTable(p, table, lsdfits, fmt='fits', header=hdict)
    # deal with output onto index.fits
    p = spirouImage.spirouFITS.write_output_dict(p, lsdfits, hdict)
    # Store LSD analysis data in file
    #p = spirouImage.WriteImage(p, lsdfits, loc['LSDDATA'], hdict)
    # return p, lsdfits and lsdfitsname
    return p, lsdfits, lsdfitsfitsname
Пример #9
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       fiber=wave_fiber,
                                       return_wavemap=True,
                                       return_filename=True)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)
    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    # set loc sources
    keys = ['drift', 'errdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for iteration file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmodespe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Compute the correction of the cosmics and re-normalisation by
        #   comparison with the reference spectrum
        # ------------------------------------------------------------------
        # correction of the cosmics and renomalisation by comparison with
        #   the reference spectrum
        dargs = [p, loc['SPEREF'], loc['SPE']]
        dkwargs = dict(threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       cut=p['IC_DRIFT_CUT_E2DS'])
        spen, cfluxr, cpt = spirouRV.ReNormCosmic2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Calculate the RV drift
        # ------------------------------------------------------------------
        dargs = [loc['SPEREF'], spen, loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'])
        rv = spirouRV.CalcRVdrift2D(*dargs, **dkwargs)
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate RV properties
        # ------------------------------------------------------------------
        # calculate the mean flux ratio
        meanfratio = np.nanmean(cfluxr)
        # calculate the weighted mean radial velocity
        wref = 1.0 / dvrmsref
        meanrv = -1.0 * np.nansum(rv * wref) / np.nansum(wref)
        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = (
            'Time from ref={0:.2f} h  - Drift mean= {1:.2f} +- {2:.3f} m/s '
            '- Flux ratio= {3:.3f} - Nb Comsic= {4}')
        WLOG(p, '', wmsg.format(deltatime, meanrv, merr, meanfratio, cpt))
        # add this iteration to storage
        loc['DRIFT'][i_it] = -1.0 * rv
        loc['ERRDRIFT'][i_it] = err_meanrv
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # Calculate drift properties
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomax = nbo  # p['IC_DRIFT_N_ORDER_MAX']
    # ------------------------------------------------------------------
    # if use mean
    if p['DRIFT_TYPE_E2DS'].upper() == 'WEIGHTED MEAN':
        # mean radial velocity
        sumwref = np.nansum(wref[:nomax])
        meanrv = np.nansum(loc['DRIFT'][:, :nomax] * wref[:nomax], 1) / sumwref
        # error in mean radial velocity
        errdrift2 = loc['ERRDRIFT'][:, :nomax]**2
        meanerr = 1.0 / np.sqrt(np.nansum(1.0 / errdrift2, 1))
        # add to loc
        loc['MDRIFT'] = meanrv
        loc['MERRDRIFT'] = meanerr
    # else use median
    else:
        # median drift
        loc['MDRIFT'] = np.nanmedian(loc['DRIFT'][:, :nomax], 1)
        # median err drift
        loc['MERRDRIFT'] = np.nanmedian(loc['ERRDRIFT'][:, :nomax], 1)
    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFT_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])

    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFT_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Пример #10
0
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ----------------------------------------------------------------------
    # Load first file
    # ----------------------------------------------------------------------
    loc = ParamDict()
    rd = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'], loc['XDIM'], loc['YDIM'] = rd
    loc.set_sources(['DATA', 'DATAHDR', 'XDIM', 'YDIM'], main_name)

    # ----------------------------------------------------------------------
    # Get object name, airmass and berv
    # ----------------------------------------------------------------------
    # Get object name
    loc['OBJNAME'] = spirouImage.GetObjName(p, loc['DATAHDR'])
    # Get the airmass
    loc['AIRMASS'] = spirouImage.GetAirmass(p, loc['DATAHDR'])
    # Get the Barycentric correction from header
    p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, loc['DATAHDR'])
    # set sources
    source = main_name + '+ spirouImage.ReadParams()'
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # used for plotting only
    wout = spirouImage.GetWaveSolution(p,
                                       image=loc['DATA'],
                                       hdr=loc['DATAHDR'],
                                       return_wavemap=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], _ = wout
    loc.set_source('WAVE', main_name)

    # ----------------------------------------------------------------------
    # Get and Normalise the blaze
    # ----------------------------------------------------------------------
    p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR'])

    # ----------------------------------------------------------------------
    # Load transmission files
    # ----------------------------------------------------------------------
    transdata = spirouDB.GetDatabaseTellMap(p)
    trans_files = transdata[0]
    # make sure we have unique filenames for trans_files
    trans_files = np.unique(trans_files)

    # ----------------------------------------------------------------------
    # Start plotting
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Load template (if available)
    # ----------------------------------------------------------------------
    # read filename from telluDB
    template_file = spirouDB.GetDatabaseObjTemp(p,
                                                loc['OBJNAME'],
                                                required=False)
    # if we don't have a template flag it
    if template_file is None:
        loc['FLAG_TEMPLATE'] = False
        loc['TEMPLATE'] = None
    else:
        loc['FLAG_TEMPLATE'] = True
        # load template
        template, _, _, _ = spirouImage.ReadImage(p, template_file)
        # add to loc
        loc['TEMPLATE'] = template
    # set the source for flag and template
    loc.set_sources(['FLAG_TEMPLATE', 'TEMPLATE'], main_name)

    # ----------------------------------------------------------------------
    # load the expected atmospheric transmission
    # ----------------------------------------------------------------------
    # read filename from telluDB
    tapas_file_names = spirouDB.GetDatabaseTellConv(p)
    tapas_file_name = tapas_file_names[-1]
    # load atmospheric transmission
    loc['TAPAS_ALL_SPECIES'] = np.load(tapas_file_name)
    loc.set_source('TAPAS_ALL_SPECIES', main_name)

    # ----------------------------------------------------------------------
    # Generate the absorption map
    # ----------------------------------------------------------------------
    # get number of files
    nfiles = len(trans_files)
    npc = p['TELLU_NUMBER_OF_PRINCIPLE_COMP']
    # check that we have enough files (greater than number of principle
    #    components)
    if nfiles <= npc:
        emsg1 = 'Not enough "TELL_MAP" files in telluDB to run PCA analysis'
        emsg2 = '\tNumber of files = {0}, number of PCA components = {1}'
        emsg3 = '\tNumber of files > number of PCA components'
        emsg4 = '\tAdd more files or reduce number of PCA components'
        WLOG(p, 'error', [emsg1, emsg2.format(nfiles, npc), emsg3, emsg4])

    # check whether we can used pre-saved abso
    filetime = spirouImage.GetMostRecent(trans_files)
    tout = spirouConfig.Constants.TELLU_ABSO_SAVE(p, filetime)
    abso_save_file, absoprefix = tout
    use_saved = os.path.exists(abso_save_file)
    # noinspection PyBroadException
    try:
        # try loading from file
        abso = np.load(abso_save_file)
        # log progress
        wmsg = 'Loaded abso from file {0}'.format(abso_save_file)
        WLOG(p, '', wmsg)
    except:
        # set up storage for the absorption
        abso = np.zeros([nfiles, np.product(loc['DATA'].shape)])
        # loop around outputfiles and add them to abso
        for it, filename in enumerate(trans_files):
            # load data
            data_it, _, _, _ = spirouImage.ReadImage(p, filename=filename)
            # push data into array
            abso[it, :] = data_it.reshape(np.product(loc['DATA'].shape))
        # log progres
        wmsg = 'Saving abso to file {0}'.format(abso_save_file)
        WLOG(p, '', wmsg)
        # remove all abso save files (only need most recent one)
        afolder = os.path.dirname(abso_save_file)
        afilelist = os.listdir(afolder)
        for afile in afilelist:
            if afile.startswith(absoprefix):
                os.remove(os.path.join(afolder, afile))
        # save to file for later use
        np.save(abso_save_file, abso)

    # filter out rows of all NaNs
    # TODO: Why are we getting all NaN e2ds files?
    abso_filtered = []
    for row in range(len(abso)):
        if np.sum(np.isnan(abso[row])) != len(abso[row]):
            abso_filtered.append(abso[row])
        else:
            wargs = [trans_files[row]]
            WLOG(p, '', 'Removing trans file {0} (all NaN)'.format(*wargs))
    abso = np.array(abso_filtered)

    # log the absorption cube
    with warnings.catch_warnings(record=True) as w:
        log_abso = np.log(abso)

    # ----------------------------------------------------------------------
    # Locate valid pixels for PCA
    # ----------------------------------------------------------------------
    # determining the pixels relevant for PCA construction
    keep = np.isfinite(np.sum(abso, axis=0))
    # log fraction of valid (non NaN) pixels
    fraction = np.nansum(keep) / len(keep)
    wmsg = 'Fraction of valid pixels (not NaNs) for PCA construction = {0:.3f}'
    WLOG(p, '', wmsg.format(fraction))
    # log fraction of valid pixels > 1 - (1/e)
    with warnings.catch_warnings(record=True) as w:
        keep &= np.min(log_abso, axis=0) > -1
    fraction = np.nansum(keep) / len(keep)
    wmsg = 'Fraction of valid pixels with transmission > 1 - (1/e) = {0:.3f}'
    WLOG(p, '', wmsg.format(fraction))

    # ----------------------------------------------------------------------
    # Perform PCA analysis on the log of the telluric absorption map
    # ----------------------------------------------------------------------
    # Requires p:
    #           TELLU_NUMBER_OF_PRINCIPLE_COMP
    #           ADD_DERIV_PC
    #           FIT_DERIV_PC
    # Requires loc:
    #           DATA
    # Returns loc:
    #           PC
    #           NPC
    #           FIT_PC
    loc = spirouTelluric.CalculateAbsorptionPCA(p, loc, log_abso, keep)

    # Plot PCA components
    # debug plot
    if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1):
        # plot the transmission map plot
        sPlt.tellu_pca_comp_plot(p, loc)

    # ----------------------------------------------------------------------
    # Get master wavelength grid for shifting
    # ----------------------------------------------------------------------
    # get master wave map
    loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p)
    loc.set_source('MASTERWAVEFILE', main_name)
    # log progress
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=loc['MASTERWAVEFILE'],
                                       return_wavemap=True,
                                       quiet=True,
                                       fiber=wave_fiber)
    _, loc['MASTERWAVE'], _ = mout
    loc.set_source('MASTERWAVE', main_name)

    # ----------------------------------------------------------------------
    # Loop around telluric files
    # ----------------------------------------------------------------------
    for basefilename in p['ARG_FILE_NAMES']:

        # ------------------------------------------------------------------
        # Construct absolute file path
        # ------------------------------------------------------------------
        filename = os.path.join(p['ARG_FILE_DIR'], basefilename)
        # ------------------------------------------------------------------
        # Construct output file names
        # ------------------------------------------------------------------
        outfile1, tag1 = CONSTANTS.TELLU_FIT_OUT_FILE(p, filename)
        outfilename1 = os.path.basename(outfile1)
        outfile2, tag2 = CONSTANTS.TELLU_FIT_RECON_FILE(p, filename)
        outfilename2 = os.path.basename(outfile2)

        # ------------------------------------------------------------------
        # Read filename
        # ------------------------------------------------------------------
        # read image
        tdata, thdr, _, _ = spirouImage.ReadImage(p, filename)
        # normalise with blaze function
        loc['SP'] = tdata / loc['NBLAZE']
        loc.set_source('SP', main_name)

        # ------------------------------------------------------------------
        # check that file has valid DPRTYPE
        # ------------------------------------------------------------------
        # get FP_FP DPRTYPE
        p = spirouImage.ReadParam(p, thdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str)
        # if dprtype is incorrect skip
        if p['DPRTYPE'] not in p['ALLOWED_TELLURIC_DPRTYPES']:
            wmsg1 = 'Skipping file (DPRTYPE incorrect)'
            wmsg2 = '\t DPRTYPE = {0}'.format(p['DPRTYPE'])
            WLOG(p, 'warning', [wmsg1, wmsg2])
            continue

        # ------------------------------------------------------------------
        # Set storage
        # ------------------------------------------------------------------
        loc['RECON_ABSO'] = np.ones(np.product(loc['DATA'].shape))
        loc['AMPS_ABSOL_TOTAL'] = np.zeros(loc['NPC'])
        loc.set_sources(['RECON_ABSO', 'AMPS_ABSOL_TOTAL'], main_name)

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # get wavelength solution
        wout = spirouImage.GetWaveSolution(p,
                                           image=tdata,
                                           hdr=thdr,
                                           return_wavemap=True,
                                           return_filename=True,
                                           fiber=wave_fiber)
        _, loc['WAVE_IT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
        loc.set_sources(['WAVE_IT', 'WAVEFILE', 'WSOURCE'], main_name)
        # load wave keys
        loc = spirouImage.GetWaveKeys(p, loc, thdr)

        # ------------------------------------------------------------------
        # Interpolate at shifted wavelengths (if we have a template)
        # ------------------------------------------------------------------
        if loc['FLAG_TEMPLATE']:
            # Requires p:
            #           TELLU_FIT_KEEP_FRAC
            # Requires loc:
            #           DATA
            #           TEMPLATE
            #           WAVE_IT
            # Returns:
            #           TEMPLATE2
            loc = spirouTelluric.BervCorrectTemplate(p, loc, thdr)

            # debug plot
            if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1):
                # plot the transmission map plot
                sPlt.tellu_fit_tellu_spline_plot(p, loc)

        # store PC and TAPAS_ALL_SPECIES before shift
        loc['PC_PRESHIFT'] = np.array(loc['PC'])
        loc['TAPAS_ALL_PRESHIFT'] = np.array(loc['TAPAS_ALL_SPECIES'])
        loc.set_sources(['PC_PRESHIFT', 'TAPAS_ALL_PRESHIFT'], main_name)

        # ------------------------------------------------------------------
        # Shift the pca components to correct frame
        # ------------------------------------------------------------------
        # log process
        wmsg1 = 'Shifting PCA components from master wavelength grid'
        wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
        WLOG(p, '', [wmsg1, wmsg2])
        # shift pca components (one by one)
        for comp in range(loc['NPC']):
            wargs = [p, loc['PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT']]
            shift_pc = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['PC'][:, comp] = shift_pc.reshape(wargs[1].shape)

            wargs = [
                p, loc['FIT_PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT']
            ]
            shift_fpc = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['FIT_PC'][:, comp] = shift_fpc.reshape(wargs[1].shape)

        # ------------------------------------------------------------------
        # Shift the tapas spectrum to correct frame
        # ------------------------------------------------------------------
        # log process
        wmsg1 = 'Shifting TAPAS spectrum from master wavelength grid'
        wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
        WLOG(p, '', [wmsg1, wmsg2])
        # shift tapas
        for comp in range(len(loc['TAPAS_ALL_SPECIES'])):
            wargs = [
                p, loc['TAPAS_ALL_SPECIES'][comp], loc['MASTERWAVE'],
                loc['WAVE_IT']
            ]
            stapas = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['TAPAS_ALL_SPECIES'][comp] = stapas.reshape(wargs[1].shape)

        # Debug plot to test shifting
        if p['DRS_PLOT'] and p['DRS_DEBUG'] > 1:
            sPlt.tellu_fit_debug_shift_plot(p, loc)

        # ------------------------------------------------------------------
        # Calculate reconstructed absorption
        # ------------------------------------------------------------------
        # Requires p:
        #           TELLU_FIT_MIN_TRANSMISSION
        #           TELLU_FIT_NITER
        #           TELLU_LAMBDA_MIN
        #           TELLU_LAMBDA_MAX
        #           TELLU_FIT_VSINI
        #           TRANSMISSION_CUT
        #           FIT_DERIV_PC
        #           LOG_OPT
        # Requires loc:
        #           FLAG_TEMPLATE
        #           TAPAS_ALL_SPECIES
        #           AMPS_ABSOL_TOTAL
        #           WAVE_IT
        #           TEMPLATE2
        #           FIT_PC
        #           NPC
        #           PC
        # Returns loc:
        #           SP2
        #           TEMPLATE2
        #           RECON_ABSO
        #           AMPS_ABSOL_TOTAL
        loc = spirouTelluric.CalcReconAbso(p, loc)
        # debug plot
        if p['DRS_PLOT'] > 0:
            # plot the recon abso plot
            sPlt.tellu_fit_recon_abso_plot(p, loc)

        # ------------------------------------------------------------------
        # Get molecular absorption
        # ------------------------------------------------------------------
        # Requires p:
        #           TELLU_FIT_LOG_LIMIT
        # Requeres loc:
        #           RECON_ABSO
        #           TAPAS_ALL_SPECIES
        # Returns loc:
        #           TAPAS_{molecule}
        loc = spirouTelluric.CalcMolecularAbsorption(p, loc)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        # set passed variable and fail message list
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # get SNR for each order from header
        nbo = loc['DATA'].shape[0]
        snr_order = p['QC_FIT_TELLU_SNR_ORDER']
        snr = spirouImage.Read1Dkey(p, thdr, p['kw_E2DS_SNR'][0], nbo)
        # check that SNR is high enough
        if snr[snr_order] < p['QC_FIT_TELLU_SNR_MIN']:
            fmsg = 'low SNR in order {0}: ({1:.2f} < {2:.2f})'
            fargs = [snr_order, snr[snr_order], p['QC_FIT_TELLU_SNR_MIN']]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(snr[snr_order])
        qc_name_str = 'SNR[{0}]'.format(snr_order)
        qc_names.append(qc_name_str)
        qc_logic.append('{0} < {1:.2f}'.format(qc_name_str,
                                               p['QC_FIT_TELLU_SNR_ORDER']))
        # ----------------------------------------------------------------------
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
            continue
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Get components amplitudes for header
        # ------------------------------------------------------------------
        # get raw file name
        raw_in_file = os.path.basename(p['FITSFILENAME'])
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(thdr)
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # set tellu keys
        npc = loc['NPC']
        hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_NPC'], value=npc)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_FIT_DPC'],
                                   value=p['FIT_DERIV_PC'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_ADD_DPC'],
                                   value=p['ADD_DERIV_PC'])
        if p['ADD_DERIV_PC']:
            values = loc['AMPS_ABSOL_TOTAL'][:npc - 2]
            hdict = spirouImage.AddKey1DList(p,
                                             hdict,
                                             p['KW_TELLU_AMP_PC'],
                                             values=values,
                                             dim1name='amp')
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_TELLU_DV_TELL1'],
                                       value=loc['AMPS_ABSOL_TOTAL'][npc - 2])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_TELLU_DV_TELL2'],
                                       value=loc['AMPS_ABSOL_TOTAL'][npc - 1])
        else:
            values = loc['AMPS_ABSOL_TOTAL'][:npc]
            hdict = spirouImage.AddKey1DList(p,
                                             hdict,
                                             p['KW_TELLU_AMP_PC'],
                                             values=values,
                                             dim1name='PC')

        # ------------------------------------------------------------------
        # Write corrected spectrum to E2DS
        # ------------------------------------------------------------------
        # reform the E2DS
        sp_out = loc['SP2'] / loc['RECON_ABSO']
        sp_out = sp_out.reshape(loc['DATA'].shape)
        # multiply by blaze
        sp_out = sp_out * loc['NBLAZE']
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        # log progress
        wmsg = 'Saving {0} to file'.format(outfilename1)
        WLOG(p, '', wmsg)
        # write sp_out to file
        p = spirouImage.WriteImage(p, outfile1, sp_out, hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in wavelength)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']]
        # get 1D spectrum
        xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1)
        # construct file name
        targs = [p, raw_in_file]
        s1dfile1, tag3 = spirouConfig.Constants.TELLU_FIT_S1D_FILE1(*targs)
        s1dfilename1 = os.path.basename(s1dfile1)
        # add header keys
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in wavelength) in {0}'
        WLOG(p, '', wmsg.format(s1dfilename1))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d1, ys1d1, np.zeros_like(ys1d1)]
        units = ['nm', None, None]
        s1d1 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in velocity)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']]
        # get 1D spectrum
        xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2)
        # construct file name
        targs = [p, raw_in_file]
        s1dfile2, tag4 = spirouConfig.Constants.TELLU_FIT_S1D_FILE2(*targs)
        s1dfilename2 = os.path.basename(s1dfile2)
        # add header keys
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in velocity) in {0}'
        WLOG(p, '', wmsg.format(s1dfilename2))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d2, ys1d2, np.zeros_like(ys1d2)]
        units = ['nm', None, None]
        s1d2 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict)

        # ------------------------------------------------------------------
        # Write reconstructed absorption to E2DS
        # ------------------------------------------------------------------
        # set up empty storage
        recon_abso2 = np.zeros_like(loc['DATA'])
        # get dimensions of data
        ydim, xdim = loc['DATA'].shape
        # loop around orders
        for order_num in range(ydim):
            # get start and end points
            start, end = xdim * order_num, xdim * order_num + xdim
            # save to storage
            recon_abso2[order_num, :] = loc['RECON_ABSO'][start:end]
        # add molecular absorption to file
        for it, molecule in enumerate(p['TELLU_ABSORBERS'][1:]):
            # get molecule keyword store and key
            molkey = '{0}_{1}'.format(p['KW_TELLU_ABSO'][0], molecule.upper())
            molkws = [molkey, 0, 'Absorption in {0}'.format(molecule.upper())]
            # load into hdict
            hdict = spirouImage.AddKey(p, hdict, molkws, value=loc[molkey])
            # add water col
            if molecule == 'h2o':
                loc['WATERCOL'] = loc[molkey]
                # set source
                loc.set_source('WATERCOL', main_name)
        # add the tau keys
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TAU_H2O'],
                                   value=loc['TAU_H2O'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TAU_REST'],
                                   value=loc['TAU_REST'])
        # log progress
        wmsg = 'Saving {0} to file'.format(outfilename2)
        WLOG(p, '', wmsg)
        # write recon_abso to file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, outfile2, recon_abso2, hdict)

        # ------------------------------------------------------------------
        # Update the Telluric database
        # ------------------------------------------------------------------
        if p['QC']:
            # add TELLU_OBJ to telluric database
            oparams = dict(objname=loc['OBJNAME'],
                           berv=loc['BERV'],
                           airmass=loc['AIRMASS'],
                           watercol=loc['WATERCOL'])
            spirouDB.UpdateDatabaseTellObj(p, outfilename1, **oparams)
            # copy file to database
            spirouDB.PutTelluFile(p, outfile1)
            # add TELLU_RECON to telluric database
            # add TELLU_OBJ to telluric database
            oparams = dict(objname=loc['OBJNAME'],
                           berv=loc['BERV'],
                           airmass=loc['AIRMASS'],
                           watercol=loc['WATERCOL'])
            spirouDB.UpdateDatabaseTellRecon(p, outfilename2, **oparams)
            # copy file to database
            spirouDB.PutTelluFile(p, outfile2)

    # ----------------------------------------------------------------------
    # End plotting
    # ----------------------------------------------------------------------
    # debug plot
    if p['DRS_PLOT'] > 0:
        # end interactive session
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Пример #11
0
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_wave_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_wave_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data reduced directory
                                containing files (also reduced directory) i.e.
                                /data/reduced/20170710 would be "20170710" but
                                /data/reduced/AT5/20180409 is "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'], loc['HCCDR'] = hcdata, hchdr, hchdr.comments
    loc['FPDATA'], loc['FPHDR'], loc['FPCDR'] = fpdata, fphdr, fphdr.comments

    # set the source
    sources = ['HCDATA', 'HCHDR', 'HCCDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR', 'FPCDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouWAVE2.get_lamp_parameters(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later in CCF part)
    # TODO is this needed? More sensible to make and set copy in CCF?
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # HC wavelength solution
    # ----------------------------------------------------------------------
    # log that we are running the HC part and the mode
    wmsg = 'Now running the HC solution, mode = {0}'
    WLOG(p, 'info', wmsg.format(p['WAVE_MODE_HC']))

    # get the solution
    loc = spirouWAVE2.do_hc_wavesol(p, loc)

    # ----------------------------------------------------------------------
    # Quality control - HC solution
    # ----------------------------------------------------------------------

    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1 HC')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['WAVE_MAP2'][1:] - loc['WAVE_MAP2'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF HC')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check the difference between consecutive pixels along an order is
    # always positive
    # loop through the orders
    ord_check = np.zeros((loc['NBO']), dtype=bool)
    for order in range(loc['NBO']):
        oc = np.all(loc['WAVE_MAP2'][order, 1:] > loc['WAVE_MAP2'][order, :-1])
        ord_check[order] = oc
    # TODO: Melissa Why is this here????
    # ord_check[5] = False
    if np.all(ord_check):
        qc_pass.append(1)
        qc_values.append('None')
    else:
        fmsg = 'Negative wavelength difference along an order'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
        qc_values.append(np.ndarray.tolist(np.where(~ord_check)[0]))
    # add to qc header lists
    # vale: array of orders where it fails

    qc_names.append('WAVE DIFF ALONG ORDER HC')
    qc_logic.append('WAVE DIFF ALONG ORDER < 0')

    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # log the global stats
    # ----------------------------------------------------------------------

    # calculate catalog-fit residuals in km/s

    res_hc = []
    sumres_hc = 0.0
    sumres2_hc = 0.0

    for order in range(loc['NBO']):
        # get HC line wavelengths for the order
        order_mask = loc['ORD_T'] == order
        hc_x_ord = loc['XGAU_T'][order_mask]
        hc_ll_ord = np.polyval(loc['POLY_WAVE_SOL'][order][::-1], hc_x_ord)
        hc_ll_cat = loc['WAVE_CATALOG'][order_mask]
        hc_ll_diff = hc_ll_ord - hc_ll_cat
        res_hc.append(hc_ll_diff * speed_of_light / hc_ll_cat)
        sumres_hc += np.nansum(res_hc[order])
        sumres2_hc += np.nansum(res_hc[order]**2)

    total_lines_hc = len(np.concatenate(res_hc))
    final_mean_hc = sumres_hc / total_lines_hc
    final_var_hc = (sumres2_hc / total_lines_hc) - (final_mean_hc**2)
    wmsg1 = 'On fiber {0} HC fit line statistic:'.format(p['FIBER'])
    wargs2 = [
        final_mean_hc * 1000.0,
        np.sqrt(final_var_hc) * 1000.0, total_lines_hc,
        1000.0 * np.sqrt(final_var_hc / total_lines_hc)
    ]
    wmsg2 = ('\tmean={0:.3f}[m/s] rms={1:.1f} {2} HC lines (error on mean '
             'value:{3:.4f}[m/s])'.format(*wargs2))
    WLOG(p, 'info', [wmsg1, wmsg2])

    # ----------------------------------------------------------------------
    # Save wave map to file
    # ----------------------------------------------------------------------
    # TODO single file-naming function? Ask Neil
    # get base input filenames
    bfilenames = []
    for raw_file in p['ARG_FILE_NAMES']:
        bfilenames.append(os.path.basename(raw_file))
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA(p)
    wavefitsname = os.path.basename(wavefits)
    # log progress
    WLOG(p, '', 'Saving wave map to {0}'.format(wavefitsname))
    # log progress
    wargs = [p['FIBER'], wavefitsname]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR'])
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # TODO add DRS_DATE and DRS_NOW
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BLAZFILE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['POLY_WAVE_SOL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['POLY_WAVE_SOL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['POLY_WAVE_SOL'])
    # write the wave "spectrum"
    p = spirouImage.WriteImage(p, wavefits, loc['WAVE_MAP2'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p)

    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # TODO add DRS_DATE and DRS_NOW
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouWAVE2.generate_res_files(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ----------------------------------------------------------------------
    # Update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])

        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # Update header of current files
    # ----------------------------------------------------------------------
    # only copy over if QC passed
    if p['QC']:
        rdir = os.path.dirname(wavefits)
        # loop around hc files and update header with
        for rawhcfile in p['ARG_FILE_NAMES']:
            hcfile = os.path.join(rdir, rawhcfile)
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolutionHC(p, loc, raw_infilepath1)

    # ----------------------------------------------------------------------
    # HC+FP wavelength solution
    # ----------------------------------------------------------------------
    # check if there's a FP input and if HC solution passed QCs
    if has_fp and p['QC']:
        # log that we are doing the FP solution
        wmsg = 'Now running the combined FP-HC solution, mode = {}'
        WLOG(p, 'info', wmsg.format(p['WAVE_MODE_FP']))
        # do the wavelength solution
        loc = spirouWAVE2.do_fp_wavesol(p, loc)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        # get parameters ffrom p
        p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
        p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
        # set passed variable and fail message list
        # passed, fail_msg = True, []
        # qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # check the difference between consecutive orders is always positive
        # get the differences
        wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
        if np.min(wave_diff) < 0:
            fmsg = 'Negative wavelength difference between orders'
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.min(wave_diff))
        qc_names.append('MIN WAVE DIFF FP-HC')
        qc_logic.append('MIN WAVE DIFF < 0')
        # ----------------------------------------------------------------------
        # check for infinites and NaNs in mean residuals from fit
        if ~np.isfinite(loc['X_MEAN_2']):
            # add failed message to the fail message list
            fmsg = 'NaN or Inf in X_MEAN_2'
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(loc['X_MEAN_2'])
        qc_names.append('X_MEAN_2')
        qc_logic.append('X_MEAN_2 not finite')
        # ----------------------------------------------------------------------
        # iterate through Littrow test cut values
        lit_it = 2
        # checks every other value
        # TODO: This QC check (or set of QC checks needs re-writing it is
        # TODO:    nearly impossible to understand
        for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
            # get x cut point
            x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
            # get the sigma for this cut point
            sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
            # get the abs min and max dev littrow values
            min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
            max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
            # get the corresponding order
            min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
            max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
            # check if sig littrow is above maximum
            rms_littrow_max = p['QC_RMS_LITTROW_MAX']
            dev_littrow_max = p['QC_DEV_LITTROW_MAX']
            if sig_littrow > rms_littrow_max:
                fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                        '{1:.2f} > {2:.2f})')
                fargs = [x_cut_point, sig_littrow, rms_littrow_max]
                fail_msg.append(fmsg.format(*fargs))
                passed = False
                qc_pass.append(0)
            else:
                qc_pass.append(1)
            # add to qc header lists
            qc_values.append(sig_littrow)
            qc_names.append('sig_littrow')
            qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
            # ----------------------------------------------------------------------
            # check if min/max littrow is out of bounds
            if np.max([max_littrow, min_littrow]) > dev_littrow_max:
                fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                        '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
                fargs = [
                    x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                    min_littrow_ord, max_littrow_ord
                ]
                fail_msg.append(fmsg.format(*fargs))
                passed = False
                qc_pass.append(0)

                # TODO: Should this be the QC header values?
                # TODO:   it does not change the outcome of QC (i.e. passed=False)
                # TODO:   So what is the point?
                # if sig was out of bounds, recalculate
                if sig_littrow > rms_littrow_max:
                    # conditions
                    check1 = min_littrow > dev_littrow_max
                    check2 = max_littrow > dev_littrow_max
                    # get the residuals
                    respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                    # check if both are out of bounds
                    if check1 and check2:
                        # remove respective orders
                        worst_order = (min_littrow_ord, max_littrow_ord)
                        respix_2 = np.delete(respix, worst_order)
                        redo_sigma = True
                    # check if min is out of bounds
                    elif check1:
                        # remove respective order
                        worst_order = min_littrow_ord
                        respix_2 = np.delete(respix, worst_order)
                        redo_sigma = True
                    # check if max is out of bounds
                    elif check2:
                        # remove respective order
                        worst_order = max_littrow_ord
                        respix_2 = np.delete(respix, max_littrow_ord)
                        redo_sigma = True
                    # else do not recalculate sigma
                    else:
                        redo_sigma, respix_2, worst_order = False, None, None
                        wmsg = 'No outlying orders, sig littrow not recalculated'
                        fail_msg.append(wmsg.format())

                    # if outlying order, recalculate stats
                    if redo_sigma:
                        mean = np.nansum(respix_2) / len(respix_2)
                        mean2 = np.nansum(respix_2**2) / len(respix_2)
                        rms = np.sqrt(mean2 - mean**2)
                        if rms > rms_littrow_max:
                            fmsg = (
                                'Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                            fargs = [
                                x_cut_point, rms, rms_littrow_max, worst_order
                            ]
                            fail_msg.append(fmsg.format(*fargs))
                        else:
                            wargs = [
                                x_cut_point, rms, rms_littrow_max, worst_order
                            ]
                            wmsg = (
                                'Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                            fail_msg.append(wmsg.format(*wargs))
            else:
                qc_pass.append(1)
            # add to qc header lists
            qc_values.append(np.max([max_littrow, min_littrow]))
            qc_names.append('max or min littrow')
            qc_logic.append('max or min littrow > {0:.2f}'
                            ''.format(dev_littrow_max))
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # archive result in e2ds spectra
        # ------------------------------------------------------------------
        # get raw input file name(s)
        raw_infiles1 = []
        for hcfile in p['HCFILES']:
            raw_infiles1.append(os.path.basename(hcfile))
        raw_infile2 = os.path.basename(p['FPFILE'])
        # get wave filename
        wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
        wavefitsname = os.path.split(wavefits)[-1]
        # log progress
        wargs = [p['FIBER'], wavefits]
        wmsg = 'Write wavelength solution for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(*wargs))
        # write solution to fitsfilename header
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR'])
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBAD'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='fpfile',
                                         values=p['FPFILE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE2'],
                                         dim1name='hcfile',
                                         values=p['HCFILES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # add wave solution date
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME1'],
                                   value=p['MAX_TIME_HUMAN'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME2'],
                                   value=p['MAX_TIME_UNIX'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
        # add number of orders
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_ORD_N'],
                                   value=loc['LL_PARAM_FINAL'].shape[0])
        # add degree of fit
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_LL_DEG'],
                                   value=loc['LL_PARAM_FINAL'].shape[1] - 1)
        # add wave solution
        hdict = spirouImage.AddKey2DList(p,
                                         hdict,
                                         p['KW_WAVE_PARAM'],
                                         values=loc['LL_PARAM_FINAL'])

        # add FP CCF drift
        # target RV and width
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_TARG_RV'],
                                   value=p['TARGET_RV'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_WIDTH'],
                                   value=p['CCF_WIDTH'])
        # the rv step
        # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
        # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_STEP'],
                                   value=p['CCF_STEP'])

        # add ccf stats
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_DRIFT'],
                                   value=loc['CCF_RES'][1])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FWHM'],
                                   value=loc['FWHM'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_CONTRAST'],
                                   value=loc['CONTRAST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MAXCPP'],
                                   value=loc['MAXCPP'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MASK'],
                                   value=p['CCF_MASK'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_LINES'],
                                   value=np.nansum(loc['TOT_LINE']))

        # write the wave "spectrum"
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

        # get filename for E2DS calibDB copy of FITSFILENAME
        e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
        wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
        wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(*wargs))

        # make a copy of the E2DS file for the calibBD
        p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

        # only copy over if QC passed
        if p['QC']:
            # loop around hc files and update header with
            for hcfile in p['HCFILES']:
                raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
                p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
            # update fp file
            raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

        # ------------------------------------------------------------------
        # Save to result table
        # ------------------------------------------------------------------
        # calculate stats for table
        final_mean = 1000 * loc['X_MEAN_2']
        final_var = 1000 * loc['X_VAR_2']
        num_lines = loc['TOTAL_LINES_2']
        err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
        sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
        # construct filename
        wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
        wavetblname = os.path.basename(wavetbl)
        # construct and write table
        columnnames = [
            'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines',
            'err', 'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000',
            'rms_L2500', 'rms_L3000', 'rms_L3500'
        ]
        columnformats = [
            '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}',
            '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
            '{:6.2f}', '{:6.2f}'
        ]
        columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                        [p['FIBER']], [final_mean], [final_var], [num_lines],
                        [err], [sig_littrow[0]], [sig_littrow[1]],
                        [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                        [sig_littrow[5]], [sig_littrow[6]]]
        # make table
        table = spirouImage.MakeTable(p,
                                      columns=columnnames,
                                      values=columnvalues,
                                      formats=columnformats)
        # merge table
        wmsg = 'Global result summary saved in {0}'
        WLOG(p, '', wmsg.format(wavetblname))
        spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

        # ------------------------------------------------------------------
        # Save line list table file
        # ------------------------------------------------------------------
        # construct filename
        # TODO proper column values
        wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
        wavelltblname = os.path.split(wavelltbl)[-1]
        # construct and write table
        columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
        columnformats = [
            '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}',
            '{:12.4f}', '{:8.4f}'
        ]

        columnvalues = []
        # construct column values (flatten over orders)
        for it in range(len(loc['X_DETAILS_2'])):
            for jt in range(len(loc['X_DETAILS_2'][it][0])):
                row = [
                    float(it), loc['X_DETAILS_2'][it][0][jt],
                    loc['LL_DETAILS_2'][it][0][jt],
                    loc['X_DETAILS_2'][it][3][jt],
                    loc['X_DETAILS_2'][it][1][jt],
                    loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt]
                ]
                columnvalues.append(row)

        # log saving
        wmsg = 'List of lines used saved in {0}'
        WLOG(p, '', wmsg.format(wavelltblname))

        # make table
        columnvalues = np.array(columnvalues).T
        table = spirouImage.MakeTable(p,
                                      columns=columnnames,
                                      values=columnvalues,
                                      formats=columnformats)
        # write table
        spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

        # ------------------------------------------------------------------
        # Move to calibDB and update calibDB
        # ------------------------------------------------------------------
        if p['QC']:
            # set the wave key
            keydb = 'WAVE_{0}'.format(p['FIBER'])
            # copy wave file to calibDB folder
            spirouDB.PutCalibFile(p, wavefits)
            # update the master calib DB file with new key
            spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
            # set the hcref key
            keydb = 'HCREF_{0}'.format(p['FIBER'])
            # copy wave file to calibDB folder
            spirouDB.PutCalibFile(p, e2dscopy_filename)
            # update the master calib DB file with new key
            e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
            spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # If the HC solution failed QCs we do not compute FP-HC solution
    elif has_fp and not p['QC']:
        wmsg = 'HC solution failed quality controls; FP not processed'
        WLOG(p, 'warning', wmsg)

    # If there is no FP file we log that
    elif not has_fp:
        wmsg = 'No FP file given; FP-HC combined solution cannot be generated'
        WLOG(p, 'warning', wmsg)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())