Пример #1
0
    def test_instrument_and_stellar_convolve_TRES(self):

        from StellarSpectra.grid_tools import TRES
        instrument = TRES()
        low, high = instrument.wl_range

        instrument_fine = TRES()
        instrument_fine.wl_dict = create_log_lam_grid(low,
                                                      high,
                                                      min_vc=0.05 / C.c_kms)

        log_spec = self.spec.to_LogLambda(instrument=instrument,
                                          min_vc=0.1 / C.c_kms)
        print("Before convolve", log_spec.get_min_v(), "km/s")

        log_spec2 = log_spec.copy()

        log_spec.instrument_and_stellar_convolve(instrument, 20)
        print("After convolve", log_spec.get_min_v(), "km/s")

        log_spec2.instrument_and_stellar_convolve(instrument_fine, 20)

        interp = InterpolatedUnivariateSpline(log_spec.wl, log_spec.fl, k=5)
        fl = interp(log_spec2.wl)

        assert np.allclose(fl,
                           log_spec2.fl), "Spectral information not preserved."
Пример #2
0
    def setup_class(self):
        self.DataSpectrum = DataSpectrum.open(
            "../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux",
            orders=np.array([22]))
        self.Instrument = TRES()
        self.HDF5Interface = HDF5Interface(
            "../libraries/PHOENIX_submaster.hdf5")

        stellar_Starting = {
            "temp": 6000,
            "logg": 4.05,
            "Z": -0.4,
            "vsini": 10.5,
            "vz": 15.5,
            "logOmega": -19.665
        }
        stellar_tuple = C.dictkeys_to_tuple(stellar_Starting)

        cheb_tuple = ("c1", "c2", "c3")
        cov_tuple = ("sigAmp", "logAmp", "l")
        region_tuple = ("h", "loga", "mu", "sigma")

        self.Model = Model(self.DataSpectrum,
                           self.Instrument,
                           self.HDF5Interface,
                           stellar_tuple=stellar_tuple,
                           cheb_tuple=cheb_tuple,
                           cov_tuple=cov_tuple,
                           region_tuple=region_tuple,
                           outdir="")
Пример #3
0
    def test_closeness_TRES(self):
        '''
        First convert self.spec from a Base1DSpectrum to a LogLambdaSpectrum. Then, convert it back to the original
        wl_grid and see if all of the information is preserved.
        '''
        from StellarSpectra.grid_tools import TRES
        instrument = TRES()
        log_spec = self.spec.to_LogLambda(instrument=instrument,
                                          min_vc=0.1 / C.c_kms)
        print(log_spec.get_min_v(), "km/s")
        interp = InterpolatedUnivariateSpline(log_spec.wl, log_spec.fl, k=5)

        #truncate original wl and fl to instrument ranges
        low, high = instrument.wl_range
        ind = (self.wl >= low) & (self.wl <= high)
        wl = self.spec.wl[ind]
        fl = self.spec.fl[ind]

        fl_back = interp(wl)

        #import matplotlib.pyplot as plt
        #fig, ax = plt.subplots(nrows=2, sharex=True)
        #ax[0].plot(wl, fl)
        #ax[0].plot(wl, fl_back)
        #ax[1].plot(wl, fl - fl_back)
        #plt.show()

        assert np.allclose(fl, fl_back), "Spectral information lost"
Пример #4
0
 def setup_class(self):
     from StellarSpectra.grid_tools import HDF5Interface, ModelInterpolator, TRES
     #libraries/PHOENIX_submaster.hd5 should have the following bounds
     #{"temp":(6000, 7000), "logg":(3.5,5.5), "Z":(-1.0,0.0), "alpha":(0.0,0.4)}
     myHDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5")
     myDataSpectrum = DataSpectrum.open(
         "/home/ian/Grad/Research/Disks/StellarSpectra/StellarSpectra/tests/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux",
         orders=np.array([21, 22, 23]))
     self.DataSpectrum = myDataSpectrum
     myInterpolator = ModelInterpolator(myHDF5Interface, myDataSpectrum)
     myInstrument = TRES()
     self.model = ModelSpectrum(myInterpolator, myInstrument)
Пример #5
0
    def test_instrument_and_stellar_convolve_TRES(self):

        from StellarSpectra.grid_tools import TRES
        instrument = TRES()
        low, high = instrument.wl_range

        instrument_fine = TRES()
        instrument_fine.wl_dict = create_log_lam_grid(low, high, min_vc=0.05/C.c_kms)

        log_spec = self.spec.to_LogLambda(instrument=instrument, min_vc=0.1/C.c_kms)
        print("Before convolve", log_spec.get_min_v(), "km/s")


        log_spec2 = log_spec.copy()

        log_spec.instrument_and_stellar_convolve(instrument, 20)
        print("After convolve", log_spec.get_min_v(), "km/s")

        log_spec2.instrument_and_stellar_convolve(instrument_fine, 20)

        interp = InterpolatedUnivariateSpline(log_spec.wl, log_spec.fl, k=5)
        fl = interp(log_spec2.wl)

        assert np.allclose(fl, log_spec2.fl), "Spectral information not preserved."
Пример #6
0
def main():
    from StellarSpectra.spectrum import DataSpectrum
    from StellarSpectra.grid_tools import TRES

    myDataSpectrum = DataSpectrum.open(
        "../../data/WASP14/WASP14-2009-06-14.hdf5", orders=np.array([22]))
    myInstrument = TRES()

    myComp = AccuracyComparison(myDataSpectrum, myInstrument,
                                "../../libraries/PHOENIX_submaster.hdf5",
                                "../../libraries/PHOENIX_objgrid6000.hdf5", {
                                    "temp": 6000,
                                    "logg": 4.5,
                                    "Z": -0.5
                                }, {
                                    "temp": 10,
                                    "logg": 0.05,
                                    "Z": 0.05
                                })

    myComp.plot_quality()
Пример #7
0
import numpy as np
from StellarSpectra.model import Model
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import TRES, HDF5Interface
from StellarSpectra import utils

myDataSpectrum = DataSpectrum.open("../../data/WASP14/WASP14-2009-06-14.hdf5",
                                   orders=np.array([21, 22, 23]))

myInstrument = TRES()

myHDF5Interface = HDF5Interface("../../libraries/PHOENIX_TRES_F.hdf5")

#Load a model using the JSON file
myModel = Model.from_json("WASP14_PHOENIX_model0_final.json", myDataSpectrum,
                          myInstrument, myHDF5Interface)

myOrderModel = myModel.OrderModels[1]
model_flux = myOrderModel.get_spectrum()

spec = myModel.get_data()
wl = spec.wls[1]
fl = spec.fls[1]

model_fl = myOrderModel.get_spectrum()
residuals = fl - model_fl

mask = spec.masks[1]
cov = myModel.OrderModels[1].get_Cov().todense()

np.save("PHOENIX_covariance_matrix.npy", cov)
Пример #8
0
def main():
    #Use argparse to determine if we've specified a config file
    import argparse
    parser = argparse.ArgumentParser(
        prog="flot_model.py",
        description="Plot the model and residuals using flot.")
    parser.add_argument("json", help="*.json file describing the model.")
    parser.add_argument("params",
                        help="*.yaml file specifying run parameters.")
    # parser.add_argument("-o", "--output", help="*.html file for output")
    args = parser.parse_args()

    import json
    import yaml

    if args.json:  #
        #assert that we actually specified a *.json file
        if ".json" not in args.json:
            import sys
            sys.exit("Must specify a *.json file.")

    if args.params:  #
        #assert that we actually specified a *.yaml file
        if ".yaml" in args.params:
            yaml_file = args.params
            f = open(args.params)
            config = yaml.load(f)
            f.close()

        else:
            import sys
            sys.exit("Must specify a *.yaml file.")
            yaml_file = args.params

    from StellarSpectra.model import Model
    from StellarSpectra.spectrum import DataSpectrum
    from StellarSpectra.grid_tools import TRES, HDF5Interface

    #Figure out what the relative path is to base
    import StellarSpectra
    base = StellarSpectra.__file__[:-26]

    myDataSpectrum = DataSpectrum.open(base + config['data'],
                                       orders=config['orders'])
    myInstrument = TRES()
    myHDF5Interface = HDF5Interface(base + config['HDF5_path'])

    myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
                              myHDF5Interface)

    for model in myModel.OrderModels:

        #If an order has regions, read these out from model_final.json
        region_dict = model.get_regions_dict()
        print("Region dict", region_dict)
        #loop through these to determine the wavelength of each
        wl_regions = [value["mu"] for value in region_dict.values()]

        #Make vertical markings at the location of the wl_regions.

        #Get the data, sigmas, and mask
        wl, fl, sigma, mask = model.get_data()

        #Get the model flux
        flm = model.get_spectrum()

        #Get chebyshev
        cheb = model.get_Cheb()

        name = "Order {}".format(model.order)

        plot_data = order_json(wl, fl, sigma, mask, flm, cheb)
        plot_data.update({"wl_regions": wl_regions})
        print(plot_data['wl_regions'])

        render_template(base, plot_data)
Пример #9
0
def main():
    #Use argparse to determine if we've specified a config file
    import argparse
    parser = argparse.ArgumentParser(
        prog="plotly_model.py",
        description="Plot the model and residuals using plot.ly")
    parser.add_argument("json", help="*.json file describing the model.")
    parser.add_argument("params",
                        help="*.yaml file specifying run parameters.")
    # parser.add_argument("-o", "--output", help="*.html file for output")
    args = parser.parse_args()

    import json
    import yaml

    if args.json:  #
        #assert that we actually specified a *.json file
        if ".json" not in args.json:
            import sys
            sys.exit("Must specify a *.json file.")

    if args.params:  #
        #assert that we actually specified a *.yaml file
        if ".yaml" in args.params:
            yaml_file = args.params
            f = open(args.params)
            config = yaml.load(f)
            f.close()

        else:
            import sys
            sys.exit("Must specify a *.yaml file.")
            yaml_file = args.params

    from StellarSpectra.model import Model
    from StellarSpectra.spectrum import DataSpectrum
    from StellarSpectra.grid_tools import TRES, HDF5Interface

    #Figure out what the relative path is to base
    import StellarSpectra
    base = StellarSpectra.__file__[:-26]

    myDataSpectrum = DataSpectrum.open(base + config['data'],
                                       orders=config['orders'])
    myInstrument = TRES()
    myHDF5Interface = HDF5Interface(base + config['HDF5_path'])

    myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
                              myHDF5Interface)

    for model in myModel.OrderModels:

        #Get the data
        wl, fl = model.get_data()

        #Get the model flux
        flm = model.get_spectrum()

        #Get residuals
        residuals = model.get_residuals()

        name = "Order {}".format(model.order)

        url = plotly_order(name, wl, fl, flm, residuals)
        print(url)
Пример #10
0
    "/n/holyscratch/panstarrs/iczekala/master_grids/PHOENIX_master.hdf5")

myInterpolator = Interpolator(myHDF5Interface,
                              avg_hdr_keys=[
                                  "air", "PHXLUM", "PHXMXLEN", "PHXLOGG",
                                  "PHXDUST", "PHXM_H", "PHXREFF", "PHXXI_L",
                                  "PHXXI_M", "PHXXI_N", "PHXALPHA", "PHXMASS",
                                  "norm", "PHXVER", "PHXTEFF"
                              ])

outKPNO = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNO/"
outKPNOfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNOfnu/"
outTRES = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRES/"
outTRESfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRESfnu/"

params_hot = {"temp": 6000, "logg": 4.5, "Z": 0.0, "vsini": 8}
params_cool = {"temp": 4000, "logg": 4.5, "Z": 0.0, "vsini": 4}

KPNOcreator = MasterToFITSIndividual(interpolator=myInterpolator,
                                     instrument=KPNO())
KPNOcreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outKPNO)
KPNOcreator.process_spectrum(params_cool, out_unit="f_nu_log", out_dir=outKPNO)
KPNOcreator.process_spectrum(params_hot, out_unit="f_nu", out_dir=outKPNOfnu)
KPNOcreator.process_spectrum(params_cool, out_unit="f_nu", out_dir=outKPNOfnu)

TREScreator = MasterToFITSIndividual(interpolator=myInterpolator,
                                     instrument=TRES())
TREScreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outTRES)
TREScreator.process_spectrum(params_cool, out_unit="f_nu_log", out_dir=outTRES)
TREScreator.process_spectrum(params_hot, out_unit="f_nu", out_dir=outTRESfnu)
TREScreator.process_spectrum(params_cool, out_unit="f_nu", out_dir=outTRESfnu)
Пример #11
0
 def test_to_LogLambda(self):
     from StellarSpectra.grid_tools import TRES
     spec = self.spec.to_LogLambda(instrument=TRES(), min_vc=0.06 / C.c_kms)
     print(spec.get_min_v(), "km/s")