print("WARNING: You have a CUDA device, so you should probably run with --cuda") batch_size = args.batch_size seq_len = args.seq_len # The size to memorize epochs = args.epochs iters = args.iters T = args.blank_len n_steps = T + (2 * seq_len) n_classes = 10 # Digits 0 - 9 n_train = 10000 n_test = 1000 print(args) print("Preparing data...") train_x, train_y = data_generator(T, seq_len, n_train) test_x, test_y = data_generator(T, seq_len, n_test) channel_sizes = [args.nhid] * args.levels kernel_size = args.ksize dropout = args.dropout model = TCN(1, n_classes, channel_sizes, kernel_size, dropout=dropout) if args.cuda: model.cuda() train_x = train_x.cuda() train_y = train_y.cuda() test_x = test_x.cuda() test_y = test_y.cuda()
"WARNING: You have a CUDA device, so you should probably run with --cuda" ) batch_size = args.batch_size seq_len = args.seq_len # The size to memorize epochs = args.epochs iters = args.iters T = args.blank_len n_steps = T + (2 * seq_len) n_classes = 10 # Digits 0 - 9 n_train = 10000 n_test = 1000 print(args) print("Preparing data...") train_x, train_y = data_generator(T, seq_len, n_train) test_x, test_y = data_generator(T, seq_len, n_test) channel_sizes = [args.nhid] * args.levels kernel_size = args.ksize dropout = args.dropout model = TCN(1, n_classes, channel_sizes, kernel_size, dropout=dropout) if args.cuda: model.cuda() train_x = train_x.cuda() train_y = train_y.cuda() test_x = test_x.cuda() test_y = test_y.cuda() criterion = nn.CrossEntropyLoss()