Пример #1
0
def generate_EMs_from_normalized_AA_PDBs(workingDir):
    structureBlurrer = StructureBlurrer()
    emDirectory = workingDir+"/simulated/EM"
    pdbNormalizedDir = workingDir+ "/simulated/PDB_normalized"
    numFiles = numOfFilesSubdir(pdbNormalizedDir)
    currFileNum = 0

    for aaDirName in os.listdir(pdbNormalizedDir):
        if aaDirName in aAList:
            emAaDir = "{0}/{1}".format(emDirectory, aaDirName)
            if not os.path.exists(emAaDir):
                os.makedirs(emAaDir)
            pdbPath = "{0}/{1}".format(pdbNormalizedDir,aaDirName)
            for pdbFileName in os.listdir(pdbPath):
                pdbFileNameMatch = re.match( r'(\S+)\.pdb', pdbFileName, re.I)
                pdbFileNameWoExtension = pdbFileNameMatch.group(1)
                pdbFilePath = "{0}/{1}".format(pdbPath,pdbFileName)

                aaStruture=PDBParser.read_PDB_file(pdbFileNameWoExtension,pdbFilePath)
                #aaSimMap = structureBlurrer.gaussian_blur(aaStruture, 2)
                aaSimMap = structureBlurrer.gaussian_blur_box(aaStruture, 2, 50, 50, 50)
                aAEmFileName = "{0}/{1}.map".format(emAaDir,pdbFileNameWoExtension)
                aaSimMap.write_to_MRC_file(aAEmFileName)
                currFileNum += 1
                sys.stdout.write('\r{:4}/{:4} ({:5.4}%), current file: {}'.format(currFileNum, numFiles, currFileNum*100./numFiles, aAEmFileName))
                sys.stdout.flush()
    print '\n',
Пример #2
0
def blur_model(p,res=4.0,emmap=False):
  pName = os.path.basename(p).split('.')[0]
  print 'reading the model'
  structure_instance=PDBParser.read_PDB_file(pName,p,hetatm=False,water=False)
  print 'filtering the model'
  blurrer = StructureBlurrer()
  if res is None: sys.exit('Map resolution required..')
  #emmap = blurrer.gaussian_blur(structure_instance, res,densMap=emmap_1,normalise=True)
  modelmap = blurrer.gaussian_blur_real_space(structure_instance, res,sigma_coeff=0.187,densMap=emmap,normalise=True) 
  return pName,modelmap, structure_instance
Пример #3
0
def blur_model(p, res=4.0, emmap=False):
    pName = os.path.basename(p).split('.')[0]
    structure_instance = PDBParser.read_PDB_file(pName,
                                                 p,
                                                 hetatm=False,
                                                 water=False)
    blurrer = StructureBlurrer()
    if res is None:
        sys.exit('Map resolution required..')
    modelmap = blurrer.gaussian_blur_real_space(structure_instance,
                                                res,
                                                densMap=emmap,
                                                normalise=True)
    return pName, modelmap
Пример #4
0
    def test_tempy_sccc(self):
        ''' Test the tempy sccc score based on the files
    provided. Use this as a baseline for the second
    chimeraX test. '''

        # the sigma factor determines the width of the Gaussian distribution used to describe each atom
        sim_sigma_coeff = 0.187

        path_test = "./"
        m = os.path.join(path_test, '1akeA_10A.mrc')
        p = os.path.join(path_test, '1ake_mdl1.pdb')
        r = 10.0
        rb_file = os.path.join(path_test, '1ake_mdl1_rigid.txt')

        scorer = ScoringFunctions()

        # read map file
        emmap = MapParser.readMRC(m)

        # read PDB file
        structure_instance = PDBParser.read_PDB_file('pdbfile',
                                                     p,
                                                     hetatm=False,
                                                     water=False)
        SCCC_list_structure_instance = []

        # read rigid body file and generate structure instances for each segment
        listRB = RBParser.read_FlexEM_RIBFIND_files(rb_file,
                                                    structure_instance)

        # score each rigid body segment
        listsc_sccc = []

        for RB in listRB:
            # sccc score
            score_SCCC = scorer.SCCC(emmap, r, sim_sigma_coeff,
                                     structure_instance, RB)
            listsc_sccc.append(score_SCCC)

        self.assertTrue(len(listRB) == 6)
        self.assertTrue(abs(round(listsc_sccc[0], 4) - 0.954) < 0.01)
        self.assertTrue(abs(round(listsc_sccc[1], 4) - 0.427) < 0.01)
        self.assertTrue(abs(round(listsc_sccc[2], 4) - 0.624) < 0.01)
        self.assertTrue(abs(round(listsc_sccc[3], 4) - 0.838) < 0.01)
        self.assertTrue(abs(round(listsc_sccc[4], 4) - 0.971) < 0.01)
        self.assertTrue(abs(round(listsc_sccc[5], 4) - 0.928) < 0.01)
Пример #5
0
def generate_extra_AA_PDBs(workingDir):
    """
    Create extra AA PDBs from the existing PDBs, by filling up each AA directory
    to 100 instances. New PDBs are created by randomly selecting a file from
    the existing list, randomly rotating it around a random axis, and writing
    the result to a new file.
    """
    min_num_of_pdbs_per_aa = 100

    # first count how much work we have to do (compute totalNumFilesNeeded)
    pdbNormalizedDir = workingDir+"/simulated/PDB"
    totalNumFilesDone = 0
    totalNumFilesNeeded = 0
    for curAA in aAList:
        numFiles = len(os.listdir(pdbNormalizedDir + '/' + curAA))
        if numFiles < min_num_of_pdbs_per_aa:
            totalNumFilesNeeded += min_num_of_pdbs_per_aa - numFiles

    # now create the files
    for curAA in aAList: # loop on all AAs
        current_dir = pdbNormalizedDir + '/' + curAA
        dirFilesList = os.listdir(current_dir)
        numFiles = len(dirFilesList)
        while numFiles < min_num_of_pdbs_per_aa: # until we have enough files
            numFiles += 1
            totalNumFilesDone += 1

            # get the file
            pdbFileName = random.choice(dirFilesList)
            pdbFileNameMatch = re.match( r'(\S+)\.pdb', pdbFileName, re.I)
            pdbFileNameWoExtension = pdbFileNameMatch.group(1)
            pdbFilePath = "{0}/{1}".format(current_dir,pdbFileName)
            aaStruture = PDBParser.read_PDB_file(pdbFileNameWoExtension, pdbFilePath)

            # randomly rotate and write the result
            randomAxis = [random.random() for i in xrange(3)]
            randomAngle = random.random()*360 # (angle is in degrees)
            aaStruture.rotate_by_axis_angle(randomAxis[0], randomAxis[1], randomAxis[2], randomAngle)
            aaStruture.write_to_PDB("{0}/{1}-extra{2}".format(current_dir, pdbFileNameWoExtension, numFiles))

            # show progress
            sys.stdout.write('\r{:4}/{:4} ({:5.4}%), current AA: {}'.format(totalNumFilesDone, totalNumFilesNeeded, totalNumFilesDone*100./totalNumFilesNeeded, curAA))
            sys.stdout.flush()
    print '\n',
Пример #6
0
 def loadEnsemble(self,path_dir,file_name_flag,hetatm=False,water=False,verbose=False,pdb=True):
     """
     Load an ensemble of Structure Instance from the directory path_dir.
     Arguments:
         *path_dir*
             directory name
         *file_name_flag*
             name or suffix of the files.
     """
     structure_list=[]
     list_rotate_models=[filein for filein in os.listdir(path_dir) if file_name_flag in filein and filein[-4:]=='.pdb' ]
     for pdbin in list_rotate_models:
         print pdbin
         if pdb==True:
             file_in=path_dir+'/'+pdbin
             #print file_in
             if verbose==True:
                 print "load file:",pdbin[:-4],file_in
             structure_instance=PDBParser.read_PDB_file(str(pdbin[:-4]),str(file_in),hetatm=hetatm,water=water)
             structure_list.append([pdbin[:-4],structure_instance])
     return structure_list
Пример #7
0
    def _ccc(self, mapname, modelname, res):
        path_test = "./"
        m = os.path.join(path_test, mapname)
        emmap1 = MapParser.readMRC(m)
        p = os.path.join(path_test, modelname)
        structure_instance = PDBParser.read_PDB_file('pdbfile',
                                                     p,
                                                     hetatm=False,
                                                     water=False)
        blurrer = StructureBlurrer()

        t = 1.5
        c1 = None
        c2 = None
        #calculate map contour
        zeropeak, ave, sigma1 = emmap1._peak_density()
        if not zeropeak is None: c1 = zeropeak + (t * sigma1)

        mt = 0.1
        if res > 20.0: mt = 2.0
        elif res > 10.0: mt = 1.0
        elif res > 6.0: mt = 0.5

        #emmap2 = blurrer.gaussian_blur(structure_instance, res, densMap=emmap1)
        emmap2 = blurrer.gaussian_blur_real_space(structure_instance,
                                                  res,
                                                  sigma_coeff=0.187,
                                                  densMap=emmap1,
                                                  normalise=True)

        # calculate model contour - emmap1 apparently?
        c2 = mt * emmap2.std()

        sc = ScoringFunctions()
        _, ovr = sc.CCC_map(emmap1, emmap2, c1, c2, 3, cmode=False)
        ccc, _ = sc.CCC_map(emmap1, emmap2, c1, c2, cmode=False)

        print("Printing CCC", ccc, ovr, c1, c2)

        return (ccc, ovr)
from TEMPy.StructureParser import PDBParser
from TEMPy.EnsembleGeneration import  EnsembleGeneration
import os



path_out='Test_Files'
if os.path.exists(path_out)==True:
	print "%s exists" %path_out
else:
	os.mkdir(path_out)
os.chdir(path_out)


'read a PDB files and create a structure instance' 
structure_instance=PDBParser.read_PDB_file('1J6Z','1J6Z.pdb',hetatm=False,water=False)
print structure_instance


translation_vector=[4.3, 1.0, -55]
rotation_angle= 110
axis=[0.21949010788898163, -0.80559787935161753, -0.55030527207975843]
print "rotation: ",rotation_angle
print "axix: ",axis
print "translation_vector",translation_vector
print "generate angular sweep for 1J6Z"
#EnsembleGeneration=EnsembleGeneration()
list_ensemble=EnsembleGeneration().anglar_sweep(structure_instance,axis, translation_vector, 10, rotation_angle, 'mdl_angular_sweep', atom_com_ind=False)


for struct in list_ensemble:
Пример #9
0
        p = tp.args.pdb
    else:
        sys.exit('Input a map and model, map resolution (required)')
    rb_file = tp.args.rigidfile
    if rb_file is None: sys.exit('Rigid body file missing')

# make class instances for density simulation (blurring), scoring and plot scores
blurrer = StructureBlurrer()
scorer = ScoringFunctions()
Plot = Plot()

# read map file
emmap = MapParser.readMRC(m)
# read PDB file
structure_instance = PDBParser.read_PDB_file('pdbfile',
                                             p,
                                             hetatm=False,
                                             water=False)
# generate atom density and blur to required resolution
#sim_map = blurrer.gaussian_blur(structure_instance, r,densMap=emmap,sigma_coeff=sim_sigma_coeff,normalise=True)

#sim_map = blurrer.gaussian_blur_real_space(structure_instance, r,densMap=emmap,sigma_coeff=sim_sigma_coeff,normalise=True)
SCCC_list_structure_instance = []
# read rigid body file and generate structure instances for each segment
listRB = RBParser.read_FlexEM_RIBFIND_files(rb_file, structure_instance)
# score each rigid body segment
listsc_sccc = []
print 'calculating scores'
for RB in listRB:
    # sccc score
    score_SCCC = scorer.SCCC(emmap, r, sim_sigma_coeff, structure_instance, RB)
    SCCC_list_structure_instance.append(score_SCCC)
Пример #10
0
    del emmap2.fullMap
    del emmap2
    return emmap_1, emmap_2


#GET INPUT DATA
if flag_example:

    p = os.path.join(path_example, '1J6Z.pdb')
    m = os.path.join(path_example, 'emd_5168_monomer.mrc')
    res = 6.6
    Name1 = os.path.basename(m).split('.')[0]
    Name2 = os.path.basename(p).split('.')[0]
    emmap1 = MapParser.readMRC(m)
    structure_instance = PDBParser.read_PDB_file(Name2,
                                                 p,
                                                 hetatm=False,
                                                 water=False)
    blurrer = StructureBlurrer()
    emmap2 = blurrer.gaussian_blur(structure_instance, res, densMap=emmap1)
    c1 = 9.7
    c2 = 1.0
elif all(x is None for x in [m, m1, m2]):
    # for 2 models
    if None in [p1, p2]:
        sys.exit(
            'Input two maps or a map and model, map resolution(s) (required) and contours (optional)'
        )
    Name1, emmap1, c1 = model_contour(p1, res=4.0, emmap=False, t=0.5)
    r1 = r2 = r = 4.0
    if c2 is None:
        Name2, emmap2, c2 = model_contour(p2, res=r, emmap=False, t=0.5)
Пример #11
0
if input_config["--res"] == 0:
    print 'Input resolution value not specified.\n'
    usage()
    #print 'multiple_ga --ipdb <pdbfile> --imap <mrcfile> --res <resolution> --popsize <popsize> --ngen <number_of_generations> --nga <number_of_ga_runs> --gof <score_type> --ncpu <number_of_cpus> --outdir <directory_name> --outfile <prefix_filename> --pdbsnap <1 or 0>'
    exit(0)

if input_config["--outdir"] == 'dummy':
    print input_config["--ipdb"]
    input_config["--outdir"] = input_config["--ipdb"].split('.')[0]
if input_config["--outfile"] == 'dummy.log':
    input_config["--outfile"] = input_config["--ipdb"].split('.')[0] + '.log'

# Read pdb
try:
    prot = PDBParser.read_PDB_file(input_config["--outdir"],
                                   input_config["--ipdb"],
                                   hetatm=False,
                                   water=False)
    # Get number of components
    comps = prot.split_into_chains()
    ncomp = len(comps)
except:
    print "Error in reading pdb coordinate file\n"
    usage()
    exit(0)

try:
    emmap = MapParser.readMRC(input_config["--imap"])
    emmap.normalise()
except:
    print "Error in reading map density file\n"
    usage()
Пример #12
0
it = 0
dict_reslist = {}
#flex_em run iter
while iter_num > 0:
    #if it > 0:
    #  prevratio = avghigh/avglow
    #if it > 1: score_inc_prev = score_inc[:]
    ##os.chdir(DATADIR)
    dict_chains_scores = {}
    out_iter_pdb = list_to_check[it]
    lab = list_labels[it]
    if os.path.isfile(os.path.join(DATADIR, out_iter_pdb)):
        #read pdb
        structure_instance = PDBParser.read_PDB_file('pdbfile',
                                                     os.path.join(
                                                         DATADIR,
                                                         out_iter_pdb),
                                                     hetatm=False,
                                                     water=False)

        #get scores
        dict_ch_scores, dict_chain_res = sc.SMOC(emmap, res_map,
                                                 structure_instance, win,
                                                 rfilepath, sim_sigma_coeff)
    else:
        print 'PDB file not found:', out_iter_pdb

    if rigid_out:
        dict_chain_indices, dict_chain_CA = blurrer.get_coordinates(
            structure_instance)
        rigidf = open(rigid_out_prefix + '_' + lab, 'w')
Пример #13
0
    def test_tempy_smoc(self):
        ''' Test the tempy smoc score based on the files
    provided. Use this as a baseline for the second
    chimeraX test.  It is taken straight from the 
    score_smoc.py example tutorial.'''

        list_labels = []

        tp = TempyParser()
        tp.generate_args()

        # the sigma factor determines the width of the Gaussian distribution used to describe each atom
        sim_sigma_coeff = 0.187
        #score window
        win = 9

        path_test = os.getcwd()
        map_file = os.path.join(path_test, '1akeA_10A.mrc')
        res_map = 10.0
        DATADIR = path_test
        list_to_check = ['1ake_mdl1.pdb']

        if len(list_labels) == 0:
            list_labels = [x.split('.')[0]
                           for x in list_to_check]  #['initial','final']
        list_styles = [
            ':', '-.', '--', '-', '-', ':', '-.', '--', '-', '-', ':', '-.',
            '--', '-', '-', ':', '-.', '--', '-', '-', ':', '-.', '--', '-',
            '-'
        ]  #'--'

        z_score_check = 2

        def model_tree(list_coord1, distpot=3.5, list_coord2=None):
            try:
                from scipy.spatial import cKDTree
                coordtree = cKDTree(list_coord2)
            except ImportError:
                from scipy.spatial import KDTree
                coordtree = KDTree(list_coord12)
            if list_coord2 != None:
                neigh_points = coordtree.query_ball_point(list_coord1, distpot)

            return neigh_points

        start_pdb = list_to_check[0]
        iter_num = len(list_to_check)
        intermed_file = ""
        slow = 0.50
        shigh = 0.25  # fraction of structure fitted reasonably well initially
        rigidbody_file = None

        sc = ScoringFunctions()
        emmap = MapParser.readMRC(map_file)

        rfilepath = rigidbody_file
        dict_str_scores = {}
        if rigidbody_file is not None:
            rfilepath = os.path.join(DATADIR, rigidbody_file)
        list_zscores = []
        curdir = os.getcwd()
        rerun_ct = 0
        flag_rerun = 0
        it = 0
        dict_reslist = {}

        # TODO - this whole bit needs a cleanup I think

        while iter_num > 0:

            dict_chains_scores = {}
            out_iter_pdb = list_to_check[it]
            lab = list_labels[it]
            if os.path.isfile(os.path.join(DATADIR, out_iter_pdb)):
                #read pdb
                structure_instance = PDBParser.read_PDB_file('pdbfile',
                                                             os.path.join(
                                                                 DATADIR,
                                                                 out_iter_pdb),
                                                             hetatm=False,
                                                             water=False)

                #get scores
                dict_ch_scores, dict_chain_res = sc.SMOC(
                    emmap, res_map, structure_instance, win, rfilepath,
                    sim_sigma_coeff)
            else:
                print('PDB file not found:', out_iter_pdb)

            for ch in dict_ch_scores:
                flagch = 1
                dict_res_scores = dict_ch_scores[ch]
                #get res number list (for ref)
                if it == 0:
                    dict_reslist[ch] = dict_chain_res[ch][:]
                try:
                    if len(dict_reslist[ch]) == 0:
                        print('Chain missing:', out_iter_pdb, ch)
                        flagch = 0
                        continue
                except KeyError:
                    print('Chain not common:', ch, out_iter_pdb)
                    flagch = 0
                    continue
                try:
                    reslist = dict_reslist[ch]
                except KeyError:
                    print('Chain not common:', ch, out_iter_pdb)
                    flagch = 0
                    continue
                if not ch in dict_chains_scores: dict_chains_scores[ch] = {}
                scorelist = []
                for res in reslist:
                    try:
                        scorelist.append(dict_res_scores[res])
                    except KeyError:
                        if reslist.index(res) <= 0:
                            scorelist.append(
                                dict_res_scores[reslist[reslist.index(res) +
                                                        1]])
                        else:
                            try:
                                scorelist.append(
                                    dict_res_scores[reslist[reslist.index(res)
                                                            - 1]])
                            except IndexError:
                                scorelist.append(0.0)
                    #save scores for each chain
                    curscore = "{0:.2f}".format(round(scorelist[-1], 2))
                    try:
                        dict_chains_scores[ch][res][it] = str(curscore)
                    except KeyError:
                        dict_chains_scores[ch][res] = [str(0.0)
                                                       ] * len(list_to_check)
                        dict_chains_scores[ch][res][it] = str(curscore)

                dict_str_scores[lab] = dict_chains_scores

                #calc ratio between current and prev scores
                if it > 0:
                    score_cur = scorelist[:]
                    score_inc = [(1 + x) / (1 + y)
                                 for x, y in zip(score_cur, score_prev)][:]
                    score_diff = [(x - y)
                                  for x, y in zip(score_cur, score_prev)][:]
                #calculate z-scores
                npscorelist = np.array(scorelist)
                try:
                    list_zscores.append((npscorelist - np.mean(npscorelist)) /
                                        np.std(npscorelist))
                except:
                    list_zscores.append((npscorelist - np.mean(npscorelist)))
                #calculate low and high score bounds
                list_sccc = scorelist[:]
                score_prev = scorelist[:]
                list_sccc.sort()

                #save avg of highest and lowest 20%
                avglow = list_sccc[int(len(list_sccc) * slow)]
                if avglow == 0.0: avglow = 0.00001
                avghigh = list_sccc[int(len(list_sccc) * (1 - shigh))]
                if it == 0:
                    avghigh1 = list_sccc[int(len(list_sccc) * (1 - shigh))]
                curratio = avghigh / avglow

                self.assertTrue(abs(avghigh - 0.967) < 0.01)
                self.assertTrue(abs(avglow - 0.956) < 0.01)
                self.assertTrue(
                    abs(sum(scorelist) / len(scorelist) - 0.899) < 0.01)

            #include smoc scores as b-factor records
            for x in structure_instance.atomList:
                cur_chain = x.chain
                cur_res = x.get_res_no()
                if not cur_chain in dict_reslist.keys(): continue
                if cur_chain in dict_chains_scores.keys():
                    try:
                        x.temp_fac = dict_chains_scores[cur_chain][cur_res][it]
                    except:
                        print('Residue missing: ', cur_res, ch, out_iter_pdb)
                        x.temp_fac = 0.0
                else:
                    x.temp_fac = 0.0

            it = it + 1
            iter_num = iter_num - 1
Пример #14
0
    def test_tempy_nmi(self):
        ''' Test the tempy nmi score based on the files
    provided. Use this as a baseline for the second
    chimeraX test. '''

        path_test = "./"
        m = os.path.join(path_test, 'emd_5168.map')
        p = os.path.join(path_test, 'emd_5170.map')

        sc = ScoringFunctions()

        rez1 = 6.6
        rez2 = 15.0

        Name1, emmap1, c1 = map_contour(m, t=1.5)
        Name2, emmap2, c2 = map_contour(p, t=1.5)

        print(rez1, rez2, c1, c2, emmap1.apix, emmap2.apix)

        if not sc.mapComparison(emmap1, emmap2):
            emmap1._crop_box(c1, 0.5)
            emmap2._crop_box(c2, 0.5)

            if rez1 > 1.25 * rez2:
                emmap_2 = lpfilter(emmap2, rez1)
                emmap1, emmap2 = match_grid(emmap1, emmap_2, c1, c2)
            elif rez2 > 1.25 * rez1:
                emmap_1 = lpfilter(emmap1, rez2)
                emmap1, emmap2 = match_grid(emmap_1, emmap2, c1, c2)
            else:
                emmap1, emmap2 = match_grid(emmap1, emmap2, c1, c2)

        nmi = 0
        try:
            nmi = sc.MI(emmap1, emmap2, c1, c2, 1, None, None, True)
            if nmi < 0.0: nmi = 0.0
        except:
            self.assertTrue(False)
            print_exc()
            nmi = 0.0

        self.assertTrue(abs(round(nmi, 5) - 1.0492) < 0.001)

        # Now test with a model and map
        p = os.path.join(path_test, '1J6Z.pdb')
        m = os.path.join(path_test, 'emd_5168_monomer.mrc')
        res = 6.6
        Name1 = os.path.basename(m).split('.')[0]
        Name2 = os.path.basename(p).split('.')[0]
        emmap1 = MapParser.readMRC(m)
        structure_instance = PDBParser.read_PDB_file(Name2,
                                                     p,
                                                     hetatm=False,
                                                     water=False)
        blurrer = StructureBlurrer()
        emmap2 = blurrer.gaussian_blur(structure_instance, res, densMap=emmap1)
        c1 = 9.7
        c2 = 1.0

        nmi = 0
        try:
            nmi = sc.MI(emmap1, emmap2, c1, c2, 1, None, None, True)
            if nmi < 0.0: nmi = 0.0
        except:
            self.assertTrue(False)
            print_exc()
            nmi = 0.0

        self.assertTrue(abs(round(nmi, 5) - 1.0575) < 0.001)
Пример #15
0
from TEMPy.MapParser import MapParser
from TEMPy.StructureBlurrer import StructureBlurrer
import numpy as np
import sys

# define point for rotation
# tempy examples use COM from input structure
# rotating against 0 0 0 doesn't seem to work
import TEMPy.Vector as Vector
com = Vector.Vector(90, 90, 90)

# read in map
target_map = MapParser.readMRC(sys.argv[1])  #read target map

# read in structure
structure_instance = PDBParser.read_PDB_file('structure_id', sys.argv[2])

# translate along x, y, z
structure_instance.translate(42, 58, -5)

# rotate along x, y, z
structure_instance.rotate_by_axis_angle(0,
                                        0,
                                        1,
                                        np.rad2deg(-2.125868534775962),
                                        com=com)
structure_instance.rotate_by_axis_angle(0,
                                        1,
                                        0,
                                        np.rad2deg(-0.0005038746980934731),
                                        com=com)
Пример #16
0
#===============================================================
# This example reads a PDB file and creates a structure instance 
#===============================================================

from TEMPy.StructureParser import PDBParser
import os


path_out='Test_Files'
if os.path.exists(path_out)==True:
	print "%s exists" %path_out
else:
	os.mkdir(path_out)
os.chdir(path_out)

#Generate Structure Instance from PDB File, default hetatm=False and water= False
'fetch a structure PDB file and create a structure instance'
structure_instance=PDBParser.fetch_PDB('1A5T','1A5T.pdb',hetatm=True,water=False)
print structure_instance

'fetch a structure mmCIF file and create a structure instance'
#need last version Biopython (1.40b)
#structure_instance=mmCIFParser.fetch_mmCIF('1A5T','1A5T.cif',hetatm=True,water=True)

'read a PDB files and create a structure instance' 
structure_instance=PDBParser.read_PDB_file('1J6Z','1J6Z.pdb',hetatm=False,water=False)
print structure_instance