def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device) linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device) mel_lengths = torch.randint(20, 120, (8, )).long().to(device) mel_lengths[-1] = 120 stop_targets = torch.zeros(8, 120, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron( num_chars=32, num_speakers=5, gst=True, postnet_output_dim=c.audio['num_freq'], decoder_output_dim=c.audio['num_mels'], r=c.r, memory_size=c.memory_size ).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor model.train() print(model) print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for _ in range(10): mel_out, linear_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
def test_train_step(self): input = torch.randint(0, 24, (8, 128)).long().to(device) mel_spec = torch.rand(8, 30, c.num_mels).to(device) linear_spec = torch.rand(8, 30, c.num_freq).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) criterion = L1LossMasked().to(device) model = Tacotron(c.embedding_size, c.num_freq, c.num_mels, c.r).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, linear_out, align = model.forward(input, mel_spec) optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) loss = 0.5 * loss + 0.5 * criterion(linear_out, linear_spec, mel_lengths) loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional if count not in [139, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
def test_train_step(self): input = torch.randint(0, 24, (8, 128)).long().to(device) mel_spec = torch.rand(8, 30, c.num_mels).to(device) linear_spec = torch.rand(8, 30, c.num_freq).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) stop_targets = torch.zeros(8, 30, 1).float().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float() criterion = L1LossMasked().to(device) criterion_st = nn.BCELoss().to(device) model = Tacotron(c.embedding_size, c.num_freq, c.num_mels, c.r).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, linear_out, align, stop_tokens = model.forward( input, mel_spec) assert stop_tokens.data.max() <= 1.0 assert stop_tokens.data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional if count not in [145, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1