Пример #1
0
    def test_train_step():
        input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 129, (8, )).long().to(device)
        input_lengths[-1] = 128
        mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        speaker_ids = torch.randint(0, 5, (8, )).long().to(device)

        criterion = GlowTTSLoss()

        # model to train
        config = GlowTTSConfig(num_chars=32)
        model = GlowTTS(config).to(device)

        # reference model to compare model weights
        model_ref = GlowTTS(config).to(device)

        model.train()
        print(" > Num parameters for GlowTTS model:%s" %
              (count_parameters(model)))

        # pass the state to ref model
        model_ref.load_state_dict(copy.deepcopy(model.state_dict()))

        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1

        optimizer = optim.Adam(model.parameters(), lr=0.001)
        for _ in range(5):
            optimizer.zero_grad()
            outputs = model.forward(input_dummy, input_lengths, mel_spec,
                                    mel_lengths, None)
            loss_dict = criterion(
                outputs["z"],
                outputs["y_mean"],
                outputs["y_log_scale"],
                outputs["logdet"],
                mel_lengths,
                outputs["durations_log"],
                outputs["total_durations_log"],
                input_lengths,
            )
            loss = loss_dict["loss"]
            loss.backward()
            optimizer.step()

        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1
Пример #2
0
 def test_train_step(self):
     batch_size = BATCH_SIZE
     input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(
         batch_size)
     criterion = GlowTTSLoss()
     # model to train
     config = GlowTTSConfig(num_chars=32)
     model = GlowTTS(config).to(device)
     # reference model to compare model weights
     model_ref = GlowTTS(config).to(device)
     model.train()
     print(" > Num parameters for GlowTTS model:%s" %
           (count_parameters(model)))
     # pass the state to ref model
     model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
     count = 0
     for param, param_ref in zip(model.parameters(),
                                 model_ref.parameters()):
         assert (param - param_ref).sum() == 0, param
         count += 1
     optimizer = optim.Adam(model.parameters(), lr=0.001)
     for _ in range(5):
         optimizer.zero_grad()
         outputs = model.forward(input_dummy, input_lengths, mel_spec,
                                 mel_lengths, None)
         loss_dict = criterion(
             outputs["z"],
             outputs["y_mean"],
             outputs["y_log_scale"],
             outputs["logdet"],
             mel_lengths,
             outputs["durations_log"],
             outputs["total_durations_log"],
             input_lengths,
         )
         loss = loss_dict["loss"]
         loss.backward()
         optimizer.step()
     # check parameter changes
     self._check_parameter_changes(model, model_ref)
Пример #3
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])

    # set model characters
    model_characters = phonemes if c.use_phonemes else symbols
    num_chars = len(model_characters)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(
            len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(
            len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
        c, args, meta_data_train, OUT_PATH)

    # setup model
    model = setup_model(num_chars,
                        num_speakers,
                        c,
                        speaker_embedding_dim=speaker_embedding_dim)
    optimizer = RAdam(model.parameters(),
                      lr=c.lr,
                      weight_decay=0,
                      betas=(0.9, 0.98),
                      eps=1e-9)
    criterion = GlowTTSLoss()

    if args.restore_path:
        print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:  #pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr
        print(f" > Model restored from step {checkpoint['step']:d}",
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP_th(model, device_ids=[args.rank])

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if args.restore_step == 0 or not args.best_path:
        best_loss = float('inf')
        print(" > Starting with inf best loss.")
    else:
        print(" > Restoring best loss from "
              f"{os.path.basename(args.best_path)} ...")
        best_loss = torch.load(args.best_path,
                               map_location='cpu')['model_loss']
        print(f" > Starting with loaded last best loss {best_loss}.")
    keep_all_best = c.get('keep_all_best', False)
    keep_after = c.get('keep_after', 10000)  # void if keep_all_best False

    # define dataloaders
    train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
    eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)

    global_step = args.restore_step
    model = data_depended_init(train_loader, model)
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        train_avg_loss_dict, global_step = train(train_loader, model,
                                                 criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch)
        eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_loss']
        best_loss = save_best_model(target_loss,
                                    best_loss,
                                    model,
                                    optimizer,
                                    global_step,
                                    epoch,
                                    c.r,
                                    OUT_PATH,
                                    model_characters,
                                    keep_all_best=keep_all_best,
                                    keep_after=keep_after)
Пример #4
0
    def test_train_step():
        input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 129, (8, )).long().to(device)
        input_lengths[-1] = 128
        mel_spec = torch.rand(8, c.audio['num_mels'], 30).to(device)
        linear_spec = torch.rand(8, 30, c.audio['fft_size']).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        speaker_ids = torch.randint(0, 5, (8, )).long().to(device)

        criterion = criterion = GlowTTSLoss()

        # model to train
        model = GlowTts(
            num_chars=32,
            hidden_channels_enc=48,
            hidden_channels_dec=48,
            hidden_channels_dp=32,
            out_channels=80,
            encoder_type='rel_pos_transformer',
            encoder_params={
                'kernel_size': 3,
                'dropout_p': 0.1,
                'num_layers': 6,
                'num_heads': 2,
                'hidden_channels_ffn': 16,  # 4 times the hidden_channels
                'input_length': None
            },
            use_encoder_prenet=True,
            num_flow_blocks_dec=12,
            kernel_size_dec=5,
            dilation_rate=5,
            num_block_layers=4,
            dropout_p_dec=0.,
            num_speakers=0,
            c_in_channels=0,
            num_splits=4,
            num_squeeze=1,
            sigmoid_scale=False,
            mean_only=False).to(device)

        # reference model to compare model weights
        model_ref = GlowTts(
            num_chars=32,
            hidden_channels_enc=48,
            hidden_channels_dec=48,
            hidden_channels_dp=32,
            out_channels=80,
            encoder_type='rel_pos_transformer',
            encoder_params={
                'kernel_size': 3,
                'dropout_p': 0.1,
                'num_layers': 6,
                'num_heads': 2,
                'hidden_channels_ffn': 16,  # 4 times the hidden_channels
                'input_length': None
            },
            use_encoder_prenet=True,
            num_flow_blocks_dec=12,
            kernel_size_dec=5,
            dilation_rate=5,
            num_block_layers=4,
            dropout_p_dec=0.,
            num_speakers=0,
            c_in_channels=0,
            num_splits=4,
            num_squeeze=1,
            sigmoid_scale=False,
            mean_only=False).to(device)

        model.train()
        print(" > Num parameters for GlowTTS model:%s" %
              (count_parameters(model)))

        # pass the state to ref model
        model_ref.load_state_dict(copy.deepcopy(model.state_dict()))

        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1

        optimizer = optim.Adam(model.parameters(), lr=c.lr)
        for _ in range(5):
            z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
                input_dummy, input_lengths, mel_spec, mel_lengths, None)
            optimizer.zero_grad()
            loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
                                  o_dur_log, o_total_dur, input_lengths)
            loss = loss_dict['loss']
            loss.backward()
            optimizer.step()

        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1
Пример #5
0
    def get_criterion(self):
        from TTS.tts.layers.losses import GlowTTSLoss  # pylint: disable=import-outside-toplevel

        return GlowTTSLoss()
Пример #6
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    if c.use_speaker_embedding:
        speakers = get_speakers(meta_data_train)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    # setup model
    model = setup_model(num_chars, num_speakers, c)
    optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
    criterion = GlowTTSLoss()

    if c.apex_amp_level:
        # pylint: disable=import-outside-toplevel
        from apex import amp
        from apex.parallel import DistributedDataParallel as DDP
        model.cuda()
        model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
    else:
        amp = None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except: #pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        if amp and 'amp' in checkpoint:
            amp.load_state_dict(checkpoint['amp'])

        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    model = data_depended_init(model, ap)
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        train_avg_loss_dict, global_step = train(model, criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch, amp)
        eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_loss']
        best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
                                    OUT_PATH, amp_state_dict=amp.state_dict() if amp else None)