# window_size = (0,0,1920,1017) # station_size = (230, 230, 1670, 930) # WIDTH = 400 # HEIGHT = 200 # hp_station = cv2.cvtColor(cv2.resize(grab_screen(station_size),(WIDTH,HEIGHT)),cv2.COLOR_BGR2GRAY) # # boss_blood = boss_hp(hp_station, 570) # # last_hp = boss_blood # # next_self_blood = player_hp(hp_station) # min_hp = 9 # check_point = (612, 187) # # start_time = time.time() h = Hp_getter() last_hy = 0 while True: # take_action(6) px, py = h.get_play_location() hx, hy = h.get_hornet_location() if last_hy > 32 and last_hy < 32.5 and hy > 32 and last_hy < 32.5: print("skill") last_hy = hy time.sleep(0.25) # print(direction_reward(0, px, hx), " ",distance_reward(0, px, hx), " ", px - hx) # print(h.get_play_location(), " ",h.get_hornet_location()) # hp_station = cv2.cvtColor(cv2.resize(grab_screen(station_size),(WIDTH,HEIGHT)),cv2.COLOR_RGBA2RGB) # fn = "./test_img/" + str(i) + ".png" # cv2.imwrite(fn, hp_station) # time.sleep(0.02)
total_remind_hp = 0 act_rmp_correct = ReplayMemory( MEMORY_SIZE, file_name='./act_correct_memory') # experience pool act_rmp_wrong = ReplayMemory( MEMORY_SIZE, file_name='./act_wrong_memory') # experience pool move_rmp_correct = ReplayMemory( MEMORY_SIZE, file_name='./move_correct_memory') # experience pool move_rmp_wrong = ReplayMemory( MEMORY_SIZE, file_name='./move_wrong_memory') # experience pool # new model, if exit save file, load it model = Model(INPUT_SHAPE, ACTION_DIM) # Hp counter hp = Hp_getter() model.load_model() algorithm = DQN(model, gamma=GAMMA, learnging_rate=LEARNING_RATE) agent = Agent(ACTION_DIM, algorithm, e_greed=0, e_greed_decrement=1e-6) # get user input, no need anymore # user = User() # paused at the begining paused = True paused = Tool.Helper.pause_game(paused) max_episode = 30000 # 开始训练 episode = 0