Пример #1
0
    def setUp(self):
        # Set up and solve TBS
        base_primitives = {'UnempPrb' : .015,
                           'DiscFac' : 0.9,
                           'Rfree' : 1.1,
                           'PermGroFac' : 1.05,
                           'CRRA' : .95}
                           

        TBSType = TractableConsumerType(**base_primitives)
        TBSType.solve()
 
        # Set up and solve Markov
        MrkvArray = np.array([[1.0-base_primitives['UnempPrb'],base_primitives['UnempPrb']],
                              [0.0,1.0]])
        Markov_primitives = {"CRRA":base_primitives['CRRA'],
                            "Rfree":np.array(2*[base_primitives['Rfree']]),
                            "PermGroFac":[np.array(2*[base_primitives['PermGroFac']/
                                          (1.0-base_primitives['UnempPrb'])])],
                            "BoroCnstArt":None,
                            "PermShkStd":[0.0],
                            "PermShkCount":1,
                            "TranShkStd":[0.0],
                            "TranShkCount":1,
                            "T_total":1,
                            "UnempPrb":0.0,
                            "UnempPrbRet":0.0,
                            "T_retire":0,
                            "IncUnemp":0.0,
                            "IncUnempRet":0.0,
                            "aXtraMin":0.001,
                            "aXtraMax":TBSType.mUpperBnd,
                            "aXtraCount":48,
                            "aXtraExtra":[None],
                            "aXtraNestFac":3,
                            "LivPrb":[1.0],
                            "DiscFac":base_primitives['DiscFac'],
                            'Nagents':1,
                            'psi_seed':0,
                            'xi_seed':0,
                            'unemp_seed':0,
                            'tax_rate':0.0,
                            'vFuncBool':False,
                            'CubicBool':True,
                            'MrkvArray':MrkvArray
                            }
                
        MarkovType             = MarkovConsumerType(**Markov_primitives)                           
        MarkovType.cycles      = 0
        employed_income_dist   = [np.ones(1),np.ones(1),np.ones(1)]
        unemployed_income_dist = [np.ones(1),np.ones(1),np.zeros(1)]
        MarkovType.IncomeDstn  = [[employed_income_dist,unemployed_income_dist]]
        
        MarkovType.solve()
        MarkovType.unpackcFunc()
 
        self.TBSType    = TBSType
        self.MarkovType = MarkovType
Пример #2
0
    def setUp(self):
        # Set up and solve TBS
        base_primitives = {
            'UnempPrb': .015,
            'DiscFac': 0.9,
            'Rfree': 1.1,
            'PermGroFac': 1.05,
            'CRRA': .95
        }

        TBSType = TractableConsumerType(**base_primitives)
        TBSType.solve()

        # Set up and solve Markov
        MrkvArray = np.array(
            [[1.0 - base_primitives['UnempPrb'], base_primitives['UnempPrb']],
             [0.0, 1.0]])
        Markov_primitives = {
            "CRRA":
            base_primitives['CRRA'],
            "Rfree":
            np.array(2 * [base_primitives['Rfree']]),
            "PermGroFac": [
                np.array(2 * [
                    base_primitives['PermGroFac'] /
                    (1.0 - base_primitives['UnempPrb'])
                ])
            ],
            "BoroCnstArt":
            None,
            "PermShkStd": [0.0],
            "PermShkCount":
            1,
            "TranShkStd": [0.0],
            "TranShkCount":
            1,
            "T_total":
            1,
            "UnempPrb":
            0.0,
            "UnempPrbRet":
            0.0,
            "T_retire":
            0,
            "IncUnemp":
            0.0,
            "IncUnempRet":
            0.0,
            "aXtraMin":
            0.001,
            "aXtraMax":
            TBSType.mUpperBnd,
            "aXtraCount":
            48,
            "aXtraExtra": [None],
            "exp_nest":
            3,
            "LivPrb": [1.0],
            "DiscFac":
            base_primitives['DiscFac'],
            'Nagents':
            1,
            'psi_seed':
            0,
            'xi_seed':
            0,
            'unemp_seed':
            0,
            'tax_rate':
            0.0,
            'vFuncBool':
            False,
            'CubicBool':
            True,
            'MrkvArray':
            MrkvArray
        }

        MarkovType = MarkovConsumerType(**Markov_primitives)
        MarkovType.cycles = 0
        employed_income_dist = [np.ones(1), np.ones(1), np.ones(1)]
        unemployed_income_dist = [np.ones(1), np.ones(1), np.zeros(1)]
        MarkovType.IncomeDstn = [[
            employed_income_dist, unemployed_income_dist
        ]]

        MarkovType.solve()
        MarkovType.unpackcFunc()

        self.TBSType = TBSType
        self.MarkovType = MarkovType
Пример #3
0
        InfiniteType.a_init = 0 * np.ones_like(a_init)

        # Make histories of permanent income levels for the infinite horizon type
        p_init_base = np.ones(Params.sim_pop_size, dtype=float)
        InfiniteType.p_init = p_init_base

        # Use a "tractable consumer" instead if desired.
        # If you want this to work, you must edit TractableBufferStockModel slightly.
        # See comments around line 34 in that module for instructions.
        if Params.do_tractable:
            from TractableBufferStockModel import TractableConsumerType
            TractableInfType = TractableConsumerType(
                DiscFac=0.99,  # will be overwritten
                UnempPrb=1 - InfiniteType.LivPrb[0],
                Rfree=InfiniteType.Rfree,
                PermGroFac=InfiniteType.PermGroFac[0],
                CRRA=InfiniteType.CRRA,
                sim_periods=InfiniteType.sim_periods,
                IncUnemp=InfiniteType.IncUnemp,
                Nagents=InfiniteType.Nagents)
            TractableInfType.p_init = InfiniteType.p_init
            TractableInfType.timeFwd()
            TractableInfType.TranShkHist = InfiniteType.TranShkHist
            TractableInfType.PermShkHist = InfiniteType.PermShkHist
            TractableInfType.a_init = InfiniteType.a_init

        # Set the type list for the infinite horizon estimation
        if Params.do_tractable:
            short_type_list = [TractableInfType]
            spec_add = 'TC'
        else:
Пример #4
0
 InfiniteType.tolerance = 0.0001
 InfiniteType.a_init = 0*np.ones_like(a_init)
 
 # Make histories of permanent income levels for the infinite horizon type
 p_init_base = np.ones(Params.sim_pop_size,dtype=float)
 InfiniteType.p_init = p_init_base
 
 # Use a "tractable consumer" instead if desired.
 # If you want this to work, you must edit TractableBufferStockModel slightly.
 # See comments around line 34 in that module for instructions.
 if Params.do_tractable:
     from TractableBufferStockModel import TractableConsumerType
     TractableInfType = TractableConsumerType(DiscFac=0.99, # will be overwritten
                                              UnempPrb=1-InfiniteType.LivPrb[0],
                                              Rfree=InfiniteType.Rfree,
                                              PermGroFac=InfiniteType.PermGroFac[0],
                                              CRRA=InfiniteType.CRRA,
                                              sim_periods=InfiniteType.sim_periods,
                                              IncUnemp=InfiniteType.IncUnemp,
                                              Nagents=InfiniteType.Nagents)
     TractableInfType.p_init = InfiniteType.p_init
     TractableInfType.timeFwd()
     TractableInfType.TranShkHist = InfiniteType.TranShkHist
     TractableInfType.PermShkHist = InfiniteType.PermShkHist
     TractableInfType.a_init = InfiniteType.a_init
        
 # Set the type list for the infinite horizon estimation
 if Params.do_tractable:
     short_type_list = [TractableInfType]
     spec_add = 'TC'
 else:
     short_type_list = [InfiniteType]