def test_forward_pass_single_samples(self): lc = Sigmoid(1, 1) for x, t in zip(self.X, self.T): t = np.atleast_2d(t) x = np.atleast_2d(x) out_buf = np.zeros_like(t) lc.forward_pass(np.array([]), [x], out_buf) assert_allclose(out_buf, t)
def test_forward_pass_multi_sample(self): lc = LinearCombination(4, 1) sig = Sigmoid(1, 1) scc = SequentialContainerConnection(4, 1, [lc, sig]) out_buf = np.zeros(self.T.shape, dtype=self.T.dtype) scc.forward_pass(self.theta, [self.X], out_buf) assert_allclose(out_buf, self.T)
def test_dimensions(self): lc = LinearCombination(5, 7) sig = Sigmoid(7, 7) scc = SequentialContainerConnection(5, 7, [lc, sig]) self.assertEqual(scc.input_dim, 5) self.assertEqual(scc.output_dim, 7) self.assertEqual(scc.get_param_dim(), 5 * 7)
def test_forward_pass_single_samples(self): lc = LinearCombination(4, 1) sig = Sigmoid(1, 1) scc = SequentialContainerConnection(4, 1, [lc, sig]) for x, t in zip(self.X, self.T): t = np.atleast_2d(t) x = np.atleast_2d(x) out_buf = np.zeros_like(t) scc.forward_pass(self.theta, [x], out_buf) assert_allclose(out_buf, t)
def test_backprop_multisample_zero_is_zero(self): lc = LinearCombination(4, 1) sig = Sigmoid(1, 1) scc = SequentialContainerConnection(4, 1, [lc, sig]) in_error_buffers = [np.zeros_like(self.X)] scc.backprop(self.theta, [self.X], self.T, np.zeros_like(self.T), in_error_buffers) grad = np.zeros_like(self.theta) scc.calculate_gradient(self.theta, grad, [self.X], self.T, in_error_buffers, np.zeros_like(self.T)) assert_allclose(in_error_buffers[0], np.zeros_like(self.X)) assert_allclose(grad, np.zeros_like(self.theta))
def test_forward_pass_multi_sample(self): lc = Sigmoid(1, 1) out_buf = np.zeros(self.T.shape, dtype=self.T.dtype) lc.forward_pass(np.array([]), [self.X], out_buf) assert_allclose(out_buf, self.T)
def test_dimensions(self): lc = Sigmoid(5, 5) self.assertEqual(lc.input_dim, 5) self.assertEqual(lc.output_dim, 5) self.assertEqual(lc.get_param_dim(), 0)
def test_backprop_multisample(self): lc = LinearCombination(4, 1) sig = Sigmoid(1, 1) scc = SequentialContainerConnection(4, 1, [lc, sig]) assert_backprop_correct(scc, self.theta, [self.X], np.ones_like(self.T))
def test_backprop_multisample(self): lc = Sigmoid(1, 1) assert_backprop_correct(lc, np.array([]), [self.X], np.ones_like(self.T))