def main():
    parser = argparse.ArgumentParser(
        description='GAN-based unsupervised segmentation train')
    parser.add_argument('--unet_weights', type=str, default="")
    parser.add_argument('--seed', type=int, default=2)
    parser.add_argument('--val_images_dirs',
                        nargs='*',
                        type=str,
                        default=[None])
    parser.add_argument('--val_masks_dirs',
                        nargs='*',
                        type=str,
                        default=[None])

    args = parser.parse_args()

    model = UNet().train().cuda()
    model.load_state_dict(torch.load(args.unet_weights))
    evaluate_all_wrappers(model, args.val_images_dirs, args.val_masks_dirs)
Пример #2
0
                        type=str,
                        default="output",
                        help="directory saving prediction results")
    opt = parser.parse_args()

    logfile = 'logs/predict/' + opt.dataset_name + '_' + opt.device + '.log'
    sys.stdout = Logger(logfile)
    print(opt)

    device = torch.device(opt.device)

    output_dir_unet = opt.output_dir + '/unet_segmentation/' + opt.dataset_name
    os.makedirs(output_dir_unet, exist_ok=True)
    unet_path = 'UNet/checkpoints/' + opt.unet_ckpt
    model_unet = UNet(n_channels=1, n_classes=1).to(device=device)
    model_unet.load_state_dict(torch.load(unet_path)['state_dict'])
    model_unet.eval()

    output_dir_yolo = opt.output_dir + '/yolo_detection/' + opt.dataset_name
    os.makedirs(output_dir_yolo, exist_ok=True)
    classes = ['vein']
    yolo_path = 'YOLOv3/checkpoints/' + opt.yolo_ckpt
    model_yolo = Darknet('YOLOv3/config/yolov3-custom.cfg',
                         img_size=416).to(device=device)
    model_yolo.load_state_dict(torch.load(yolo_path))
    model_yolo.eval()

    image_folder = 'DATA/' + opt.dataset_name + '/imgs'
    image_files = [x for x in os.listdir(image_folder)
                   if x.endswith('.jpg')]  # only jpg files
    for i, fn in enumerate(image_files):