Пример #1
0
 def showLoadPercent(self, idx):
     entireDataLength = env.GLOBAL_DATA_LOAD_NUM
     onePercentLength = int(entireDataLength / 100)
     if onePercentLength != 0 and (idx + 1) % onePercentLength == 0:
         print_debug(
             "Music Dataset Loading : {} % \tLoaded data number : {} / {}".
             format((idx + 1) / onePercentLength, idx, entireDataLength))
Пример #2
0
    def __init__(self):
        self.data_sets = []
        '''''' '''''' '''''' '''''' '''''' '''''' '''''' ''' Get all data path ''' '''''' '''''' '''''' '''''' '''''' '''''' ''''''
        loaderPath = '{}/{}/'.format(env.DATA_INPUT_PATH, env.DATA_LOADER_PATH)
        dataPathList = os.listdir(loaderPath)
        loadFileIndex = 0
        '''''' '''''' '''''' '''''' '''''' '''''' '''''' ''' Data loading ''' '''''' '''''' '''''' '''''' '''''' '''''' ''''''
        print_debug("- Music data loading Start.-")
        for dataPath in dataPathList:
            chunkFilePathMelody = loaderPath + dataPath
            file = open(chunkFilePathMelody, 'rb')
            while True:
                try:
                    loadedListData = pickle.load(file)
                    self.data_sets.append(loadedListData)
                    loadFileIndex += 1

                    self.showLoadPercent(loadFileIndex)
                    if loadFileIndex >= env.GLOBAL_DATA_LOAD_NUM:
                        break
                except EOFError:
                    break

            if loadFileIndex >= env.GLOBAL_DATA_LOAD_NUM:
                break
        '''''' '''''' '''''' '''''' '''''' '''''' '''''' ''' Preprocessing ''' '''''' '''''' '''''' '''''' '''''' '''''' ''''''
        self.data_sets = np.array(self.data_sets)
        self.data_sets = self.data_sets.reshape(-1, 1, env.GAN_INPUT_HEIGHT,
                                                env.GAN_INPUT_WIDTH)
Пример #3
0
def changeToPiano(src, dst):
    try:
        converter_file = converter.parse(src)
        for part in converter_file.parts:
            part.insert(0, instrument.Piano())
        converter_file.write('midi', dst)
    except:
        print_debug("Change to piano Error : May be there is no note in midi")
Пример #4
0
def main_train(modelLoadNumber, modelName):
    print_debug("Data load path : {}".format(env.DATA_LOADER_PATH))
    print_debug("Data load size : {}".format(env.GLOBAL_DATA_LOAD_NUM))
    print_debug("Data batch size : {}".format(env.GLOBAL_BATCH_SIZE))
    print_debug("Model Name : {}".format(modelName))

    model = GAN.GAN(modelLoadNumber, modelName)
    loader = DataLoader.MusicDataLoader(env.GAN_BATCH_SIZE, True, 0)
    modelLoadNumber = 0 if (modelLoadNumber == -1) else modelLoadNumber
    for epoch in range(modelLoadNumber, env.GLOBAL_EPOCH_NUM):
        train(model, loader, epoch)
        generating(model, epoch)
        modelSave(model, epoch)
Пример #5
0
def generating(model, epoch):
    if env.GLOBAL_IS_PUBLISHED == False and epoch % env.GLOBAL_EPOCH_GEN_TERM != 0:
        return
    if env.GLOBAL_IS_PUBLISHED == True:
        epoch = random.randrange(1, 100000000)

    data = model.generate(1)
    data = func.tensor_to_numpy(data)
    data = data[0][0]

    saveDirectory = func.getGeneratingDirectory()
    saveDirectory_MidiRaw = '{}/MidiRaw'.format(saveDirectory)
    saveDirectory_MidiPiano = '{}/MidiPiano'.format(saveDirectory)
    saveDirectory_ImgBit = '{}/ImageBit'.format(saveDirectory)
    saveDirectory_ImgWeight = '{}/ImageWeight'.format(saveDirectory)
    print_debug("epoch : {} Trying saving generated data".format(epoch))

    if not (os.path.isdir(saveDirectory_MidiRaw)):
        os.makedirs(os.path.join(saveDirectory_MidiRaw))
    if not (os.path.isdir(saveDirectory_MidiPiano)):
        os.makedirs(os.path.join(saveDirectory_MidiPiano))
    if not (os.path.isdir(saveDirectory_ImgBit)):
        os.makedirs(os.path.join(saveDirectory_ImgBit))
    if not (os.path.isdir(saveDirectory_ImgWeight)):
        os.makedirs(os.path.join(saveDirectory_ImgWeight))

    dstMidRaw = '{}/GeneratedMidi-{}.mid'.format(saveDirectory_MidiRaw, epoch)
    dstMidPiano = '{}/GeneratedMidi-{}.mid'.format(saveDirectory_MidiPiano, epoch)
    dstImgBit = '{}/GeneratedMidi-{}.png'.format(saveDirectory_ImgBit, epoch)
    dstImgWeight = '{}/GeneratedMidi_weight-{}.png'.format(saveDirectory_ImgWeight, epoch)

    if env.GLOBAL_IS_CREATE_RAW_MIDI == True:
        midi.getMidiFromBitArray(data, dstMidRaw)
    if env.GLOBAL_IS_CREATE_PIANO_MIDI == True:
        changeToPiano(dstMidRaw, dstMidPiano)
    if env.GLOBAL_IS_CREATE_BIT_IMAGE == True:
        midi.getImageFromMidi(dstMidRaw, dstImgBit)
    if env.GLOBAL_IS_CREATE_WEIGHT_IMAGE == True:
        midi.getImageFromWeight(data, dstImgWeight)
    if env.GLOBAL_IS_PUBLISHED == True:
        print(os.path.abspath(dstImgBit))
Пример #6
0
def train(model, loader, epoch):
    print_debug(time.ctime())
    print_debug("epoch : {} Training Start----------------------------------------------------".format(epoch))
    for i, (miniBatch) in enumerate (loader.getLoader()):
        miniBatch = miniBatch.numpy()
        d_loss, g_loss = model.train(loader.getBatchSize(), miniBatch)
        if i % env.GLOBAL_RECORD_STEPS_FOR_LOSS == 0:
            d_loss = func.tensor_to_numpy(d_loss)
            g_loss = func.tensor_to_numpy(g_loss)
            print_debug("step : {}, \tDiscriminator loss : {}, \tGenerator loss : {}".format(i, d_loss, g_loss))
            accuracy(model, miniBatch)
Пример #7
0
def accuracy(model, realData):
    # print discriminator accuracy
    if env.GLOBAL_BATCH_SIZE < env.GLOBAL_BATCH_SIZE_FOR_ACCURACY:
        env.GLOBAL_BATCH_SIZE_FOR_ACCURACY = env.GLOBAL_BATCH_SIZE
    realData = realData[0:env.GLOBAL_BATCH_SIZE_FOR_ACCURACY]
    accuracy_real, accuracy_fake, accuracy_loss = model.accuracy(env.GLOBAL_BATCH_SIZE_FOR_ACCURACY, realData)
    accuracy_real = func.tensor_to_numpy(accuracy_real)
    accuracy_fake = func.tensor_to_numpy(accuracy_fake)
    accuracy_loss = func.tensor_to_numpy(accuracy_loss)

    threshold = 0.3
    answer_real = [0, 0, 0]  # validate result : [real, ambiguous, fake]
    answer_fake = [0, 0, 0]  # validate result : [real, ambiguous, fake]
    for i in range(accuracy_real.size):
        if accuracy_real[i] > 1 - threshold:
            answer_real[0] += 1
        elif accuracy_real[i] < threshold:
            answer_real[2] += 1
        else:
            answer_real[1] += 1

        if accuracy_fake[i] > 1 - threshold:
            answer_fake[0] += 1
        elif accuracy_fake[i] < threshold:
            answer_fake[2] += 1
        else:
            answer_fake[1] += 1

    print_debug("\t\t\tAccuracy for real data : real : {}, ambg : {}, fake : {}".format(answer_real[0], answer_real[1], answer_real[2]))
    print_debug("\t\t\tAccuracy for fake data : real : {}, ambg : {}, fake : {}".format(answer_fake[0], answer_fake[1], answer_fake[2]))
    print_debug("\t\t\tAccuracy detail")  # just use tolist for getting good looking
    print_debug("\t\t\t" + str(accuracy_real.tolist()))
    print_debug("\t\t\t" + str(accuracy_fake.tolist()))
    print_debug("\t\t\t" + str(accuracy_loss.tolist()))