def split_ds_train_test(supervised): size_supervised = len(supervised) global split_train_test split_train_test = int(size_supervised * config.train_rate) train, test = supervised[0:split_train_test], supervised[split_train_test:] # transform the scale of the data scaler, train_scaled, test_scaled = data_misc.scale(train, test) x_train, y_train = train_scaled[:, 0:-1], train_scaled[:, -1] x_test, y_test = test_scaled[:, 0:-1], test_scaled[:, -1] return scaler, x_train, y_train, x_test, y_test
def split_ds_train_val_test(supervised): size_supervised = len(supervised) global split_train_val split_train_val = int(size_supervised * config.train_val_rate) global split_val_test split_val_test = int(size_supervised * config.val_test_rate) global split_train_test split_train_test = split_train_val + split_val_test train = supervised[0:split_train_val] val = supervised[split_train_val:split_train_val + split_val_test] test = supervised[split_train_val + split_val_test:] # transform the scale of the data scaler, train_scaled, val_scaled = data_misc.scale(train, val) scaler, train_scaled, test_scaled = data_misc.scale(train, test) #print(val[:, -1]) x_train, y_train = train_scaled[:, 0:-1], train_scaled[:, -1] x_val, y_val = val_scaled[:, 0:-1], val_scaled[:, -1] x_test, y_test = test_scaled[:, 0:-1], test_scaled[:, -1] return scaler, x_train, y_train, x_val, y_val, x_test, y_test
df_trend[column] = series[column] trend_supervised = supervised_diff_dt(df_trend, window_size_trend) # we cut according to the biggest window size trend_supervised = trend_supervised[total_window_size:, :] # Concatenate with numpy supervised = np.concatenate((trend_supervised, supervised), axis=1) # Supervised reffers either avg_supervised or the combination of avg_supervised with bitcoin_values. size_supervised = len(supervised) split = int(size_supervised * 0.80) train, test = supervised[0:split], supervised[split:] # transform the scale of the data scaler, train_scaled, test_scaled = data_misc.scale(train, test) x_train, y_train = train_scaled[:, 0:-1], train_scaled[:, -1] x_test, y_test = test_scaled[:, 0:-1], test_scaled[:, -1] total_features = len(train[0]) print('Total Features: %i' % (total_features)) print('Total of supervised data: %i' % (size_supervised)) print(':: Train ::') len_y_train = len(y_train) # No Prediction y_predicted_es = y_train rmse, y_predicted = compare_train(len_y_train, y_predicted_es) normal_train_results.append(rmse) corr_normal_train_results.append( data_misc.correlation(y_train, y_predicted))