Пример #1
0
    def forward(self, input: torch.Tensor, ilens: torch.Tensor = None):
        """
        STFT forward function.
        Args:
            input: (Batch, Nsamples) or (Batch, Nsample, Channels)
            ilens: (Batch)
        Returns:
            output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2)
        """
        bs = input.size(0)
        if input.dim() == 3:
            multi_channel = True
            # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
            input = input.transpose(1, 2).reshape(-1, input.size(1))
        else:
            multi_channel = False

        # output: (Batch, Freq, Frames, 2=real_imag)
        # or (Batch, Channel, Freq, Frames, 2=real_imag)
        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(self.win_length, dtype=input.dtype, device=input.device)
        else:
            window = None
        output = torch.stft(input,
                            n_fft=self.n_fft,
                            win_length=self.win_length,
                            hop_length=self.hop_length,
                            center=self.center,
                            window=window,
                            normalized=self.normalized,
                            onesided=self.onesided)
        # output: (Batch, Freq, Frames, 2=real_imag)
        # -> (Batch, Frames, Freq, 2=real_imag)
        output = output.transpose(1, 2)
        if multi_channel:
            # output: (Batch * Channel, Frames, Freq, 2=real_imag)
            # -> (Batch, Frame, Channel, Freq, 2=real_imag)
            output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(1, 2)

        if ilens is not None:
            if self.center:
                pad = self.win_length // 2
                ilens = ilens + 2 * pad

            olens = (ilens - self.win_length) // self.hop_length + 1
            output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
        else:
            olens = None

        return output, olens
 def _forward(self,
              xs,
              ilens,
              ys=None,
              olens=None,
              ds=None,
              ps=None,
              es=None,
              speaker_embeddings=None,
              is_inference=False,
              alpha=1.0):
     x_masks = self._source_mask(ilens)
     hs, _ = self.encoder(xs, x_masks)
     if self.spk_embed_dim is not None:
         hs = self._integrate_with_spk_embed(hs, speaker_embeddings)
     d_masks = make_pad_mask(ilens).to(xs.device)
     if self.stop_gradient_from_pitch_predictor:
         p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
     else:
         p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
     if self.stop_gradient_from_energy_predictor:
         e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
     else:
         e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
     if is_inference:
         d_outs = self.duration_predictor.inference(hs, d_masks)
         p_embs = self.pitch_embed(p_outs.transpose(1, 2)).transpose(1, 2)
         e_embs = self.energy_embed(e_outs.transpose(1, 2)).transpose(1, 2)
         hs = hs + e_embs + p_embs
         hs = self.length_regulator(hs, d_outs, alpha)
     else:
         d_outs = self.duration_predictor(hs, d_masks)
         p_embs = self.pitch_embed(ps.transpose(1, 2)).transpose(1, 2)
         e_embs = self.energy_embed(es.transpose(1, 2)).transpose(1, 2)
         hs = hs + e_embs + p_embs
         hs = self.length_regulator(hs, ds)
     if olens is not None and not is_inference:
         if self.reduction_factor > 1:
             olens_in = olens.new(
                 [olen // self.reduction_factor for olen in olens])
         else:
             olens_in = olens
         h_masks = self._source_mask(olens_in)
     else:
         h_masks = None
     zs, _ = self.decoder(hs, h_masks)
     before_outs = self.feat_out(zs).view(zs.size(0), -1, self.odim)
     after_outs = before_outs + self.postnet(before_outs.transpose(
         1, 2)).transpose(1, 2)
     return before_outs, after_outs, d_outs, p_outs, e_outs