Пример #1
0
    def OneTraj(self, x, y):
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1, q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state

        self.vectarget = [0.0, 0.0, self.rs.XTarget, self.rs.YTarget]
        totalCost = 0
        while (not self.isFinished()):
            action = self.actor.action(self.estimState)
            _, cost = self.__act__(action)
            totalCost += cost[0]
        totalCost += self.trajCost.computeFinalReward(self.arm, self.t,
                                                      self.coordHand,
                                                      self.sizeOfTarget)
        return totalCost, self.t
Пример #2
0
    def saveOneTraj(self, x, y):
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state
        
        self.dataStore=[]
        self.vectarget=[0.0, 0.0, self.rs.XTarget, self.rs.YTarget]
        totalCost=0
        while(not self.isFinished()):
            action=self.actor.action(self.estimState)
            _,cost = self.actAndStore(action)
            totalCost+= cost[0]
        totalCost += self.trajCost.computeFinalReward(self.arm,self.t,self.coordHand,self.sizeOfTarget)
        filename = findDataFilename(self.saveName+"Log/","traj"+str(x)+"-"+str(y),".log")
        np.savetxt(filename,self.dataStore)
        
        #used to ignore dispersion when the target line is not crossed
        if self.coordHand[1] >= self.rs.YTarget:
            self.lastCoord.append(self.coordHand[0])
            
        return totalCost, self.t
Пример #3
0
    def OneTraj(self, x, y):
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state
        
        self.vectarget=[0.0, 0.0, self.rs.XTarget, self.rs.YTarget]
        totalCost=0
        while(not self.isFinished()):
            action=self.actor.action(self.estimState)
            _,cost = self.__act__(action)
            totalCost+= cost[0]
        totalCost += self.trajCost.computeFinalReward(self.arm,self.t,self.coordHand,self.sizeOfTarget)
        return totalCost, self.t
Пример #4
0
    def reset(self, noise=True):
        #print("Episode : "+str(self.nbReset)+ ", Progression :"+str(self.progress))
        #self.nbReset+=1
        #print(self.cost)
        #Discrete begining
        """
        i = rd.randint(0,len(self.posIni)-1)
        #i=0
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(self.posIni[i][0], self.posIni[i][1])
        """
        #Progress
        """
        i = ((rd.random()*6*np.pi - 3*np.pi)*self.progressTab[self.progress]-6*np.pi)/12
        j= (rd.random()*0.3-0.15)*self.progressTab[self.progress]+0.25
        #i=0
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(self.rs.XTarget+ j*np.cos(i), self.rs.YTarget+ j*np.sin(i))
        """


        


        """
        i =  - 6*np.pi/12
        j=rd.randint(1,4)/10.
        #j=0.1

        q1, q2 = self.arm.mgi(self.rs.XTarget+ j*np.cos(i), self.rs.YTarget+ j*np.sin(i))
        """

        x, y = self.begin()
        q1, q2 = self.arm.mgi(x,y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0., 0.
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state
Пример #5
0
    def reset(self, noise=True):
        #print("Episode : "+str(self.nbReset)+ ", Progression :"+str(self.progress))
        #self.nbReset+=1
        #print(self.cost)
        #Discrete begining
        """
        i = rd.randint(0,len(self.posIni)-1)
        #i=0
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(self.posIni[i][0], self.posIni[i][1])
        """
        #Progress
        """
        i = ((rd.random()*6*np.pi - 3*np.pi)*self.progressTab[self.progress]-6*np.pi)/12
        j= (rd.random()*0.3-0.15)*self.progressTab[self.progress]+0.25
        #i=0
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(self.rs.XTarget+ j*np.cos(i), self.rs.YTarget+ j*np.sin(i))
        """
        """
        i =  - 6*np.pi/12
        j=rd.randint(1,4)/10.
        #j=0.1

        q1, q2 = self.arm.mgi(self.rs.XTarget+ j*np.cos(i), self.rs.YTarget+ j*np.sin(i))
        """

        x, y = self.begin()
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1, q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0., 0.
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state
Пример #6
0
    def saveOneTraj(self, x, y):
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1, q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        self.coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        self.i, self.t, self.cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        self.estimState = state

        self.dataStore = []
        self.vectarget = [0.0, 0.0, self.rs.XTarget, self.rs.YTarget]
        totalCost = 0
        while (not self.isFinished()):
            action = self.actor.action(self.estimState)
            _, cost = self.actAndStore(action)
            totalCost += cost[0]
        totalCost += self.trajCost.computeFinalReward(self.arm, self.t,
                                                      self.coordHand,
                                                      self.sizeOfTarget)
        filename = findDataFilename(self.saveName + "Log/",
                                    "traj" + str(x) + "-" + str(y), ".log")
        np.savetxt(filename, self.dataStore)

        #used to ignore dispersion when the target line is not crossed
        if self.coordHand[1] >= self.rs.YTarget:
            self.lastCoord.append(self.coordHand[0])

        return totalCost, self.t
Пример #7
0
    def runTrajectory(self, x, y, foldername):
        '''
    	Generates trajectory from the initial position (x, y)
    
    	Inputs:		-x: abscissa of the initial position, float
    			-y: ordinate of the initial position, float
    
    	Output:		-cost: the cost of the trajectory, float
    	'''
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        coordElbow, coordHand = self.arm.mgdFull(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        i, t, cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        estimState = state
        dataStore = []
        qtarget1, qtarget2 = self.arm.mgi(self.rs.XTarget, self.rs.YTarget)
        vectarget = [0.0, 0.0, qtarget1, qtarget2]

        #loop to generate next position until the target is reached 
        while coordHand[1] < self.rs.YTarget and i < self.rs.numMaxIter:
            stepStore = []
            #computation of the next muscular activation vector using the controller theta
            #print ("state :",self.arm.getState())

            U = self.controller.computeOutput(estimState)

            if det:
                Unoisy = muscleFilter(U)
            else:
                Unoisy = getNoisyCommand(U,self.arm.musclesP.knoiseU)
                Unoisy = muscleFilter(Unoisy)
            #computation of the arm state
            realNextState = self.arm.computeNextState(Unoisy, self.arm.getState())
 
            #computation of the approximated state
            tmpState = self.arm.getState()

            if det:
                estimNextState = realNextState
            else:
                U = muscleFilter(U)
                estimNextState = self.stateEstimator.getEstimState(tmpState,U)
            
            #print estimNextState

            self.arm.setState(realNextState)

            #computation of the cost
            cost += self.computeStateTransitionCost(Unoisy)

            '''
            print "U =", U
            print "Unoisy =", Unoisy
            print "estimstate =", estimState
            #print "theta =", self.controller.theta
            if math.isnan(cost):
                print "NAN : U =", U
                print "NAN : Unoisy =", Unoisy
                print "NAN : estimstate =", estimState
                #print "NAN : theta =", self.controller.theta
                sys.exit()
            '''

            #get dotq and q from the state vector
            dotq, q = getDotQAndQFromStateVector(tmpState)
            coordElbow, coordHand = self.arm.mgdFull(q)
            #print ("dotq :",dotq)
            #computation of the coordinates to check if the target is reach or not
            #code to save data of the trajectory

            #Note : these structures might be much improved
            if self.saveTraj == True: 
                stepStore.append(vectarget)
                stepStore.append(estimState)
                stepStore.append(tmpState)
                stepStore.append(Unoisy)
                stepStore.append(np.array(U))
                stepStore.append(estimNextState)
                stepStore.append(realNextState)
                stepStore.append([coordElbow[0], coordElbow[1]])
                stepStore.append([coordHand[0], coordHand[1]])
                #print ("before",stepStore)
                tmpstore = np.array(stepStore).flatten()
                row = [item for sub in tmpstore for item in sub]
                #print ("store",row)
                dataStore.append(row)

            estimState = estimNextState
            i += 1
            t += self.rs.dt

        cost += self.computeFinalReward(t,coordHand)

        if self.saveTraj == True:
            filename = findFilename(foldername+"Log/","traj",".log")
            np.savetxt(filename,dataStore)
            '''
            if coordHand[0] >= -self.sizeOfTarget/2 and coordHand[0] <= self.sizeOfTarget/2 and coordHand[1] >= self.rs.YTarget and i<230:
                foldername = pathDataFolder + "TrajRepository/"
                name = findFilename(foldername,"Traj",".traj")
                np.savetxt(name,dataStore)
            '''

        lastX = -1000 #used to ignore dispersion when the target line is not crossed
        if coordHand[1] >= self.rs.YTarget:
            lastX = coordHand[0]
        #print "end of trajectory"
        return cost, t, lastX
Пример #8
0
    def runTrajectoryOpti(self, x, y):
        '''
        Generates trajectory from the initial position (x, y) use for plot trajectory wihtout save them 
    
        Inputs:        -x: abscissa of the initial position, float
                    -y: ordinate of the initial position, float
    
        Output:
                        -cost: the cost of the trajectory, float
                        -t:    time of the trajectory, float
                        -lastX: Last X
        '''
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        i, t, cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        estimState = state


        #loop to generate next position until the target is reached 
        while coordHand[1] < self.rs.YTarget and i < self.rs.maxSteps:
            #computation of the next muscular activation vector using the controller theta
            #print ("state :",self.arm.getState())
            U = self.controller.computeOutput(estimState)

            if self.rs.det:
                realU = muscleFilter(U)
                #computation of the arm state
                realNextState = self.arm.computeNextState(realU, self.arm.getState())
     
                #computation of the approximated state
                tmpState = self.arm.getState()
                
                estimNextState = realNextState
            else:
                #realU = getNoisyCommand(U,self.arm.getMusclesParameters().getKnoiseU())
                realU = getNoisyCommand(U,self.arm.musclesP.knoiseU)
                realU = muscleFilter(realU)


                #computation of the arm state
                realNextState = self.arm.computeNextState(realU, self.arm.getState())
     
                #computation of the approximated state
                tmpState = self.arm.getState()
                
                U = muscleFilter(U)
                estimNextState = self.stateEstimator.getEstimState(tmpState,U)


            
            #print estimNextState

            self.arm.setState(realNextState)

            #computation of the cost
            cost += self.trajCost.computeStateTransitionCost(realU)
            #get dotq and q from the state vector
            _, q = self.arm.getDotQAndQFromStateVector(tmpState)
            coordHand = self.arm.mgdEndEffector(q)
            #print ("dotq :",dotq)
            #computation of the coordinates to check if the target is reach or not


            estimState = estimNextState
            i += 1
            t += self.rs.dt


        cost += self.trajCost.computeFinalReward(self.arm,t,coordHand, self.sizeOfTarget)
        lastX = -1000 #used to ignore dispersion when the target line is not crossed
        if coordHand[1] >= self.rs.YTarget:
            lastX = coordHand[0]
        return cost, t, lastX
Пример #9
0
    def runTrajectoryOpti(self, x, y):
        '''
        Generates trajectory from the initial position (x, y) use for plot trajectory wihtout save them 
    
        Inputs:        -x: abscissa of the initial position, float
                    -y: ordinate of the initial position, float
    
        Output:
                        -cost: the cost of the trajectory, float
                        -t:    time of the trajectory, float
                        -lastX: Last X
        '''
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1, q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        coordHand = self.arm.mgdEndEffector(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        i, t, cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        estimState = state

        #loop to generate next position until the target is reached
        while coordHand[1] < self.rs.YTarget and i < self.rs.maxSteps:
            #computation of the next muscular activation vector using the controller theta
            #print ("state :",self.arm.getState())
            U = self.controller.computeOutput(estimState)

            if self.rs.det:
                realU = muscleFilter(U)
                #computation of the arm state
                realNextState = self.arm.computeNextState(
                    realU, self.arm.getState())

                #computation of the approximated state
                tmpState = self.arm.getState()

                estimNextState = realNextState
            else:
                #realU = getNoisyCommand(U,self.arm.getMusclesParameters().getKnoiseU())
                realU = getNoisyCommand(U, self.arm.musclesP.knoiseU)
                realU = muscleFilter(realU)

                #computation of the arm state
                realNextState = self.arm.computeNextState(
                    realU, self.arm.getState())

                #computation of the approximated state
                tmpState = self.arm.getState()

                U = muscleFilter(U)
                estimNextState = self.stateEstimator.getEstimState(tmpState, U)

            #print estimNextState

            self.arm.setState(realNextState)

            #computation of the cost
            cost += self.trajCost.computeStateTransitionCost(realU)
            #get dotq and q from the state vector
            _, q = self.arm.getDotQAndQFromStateVector(tmpState)
            coordHand = self.arm.mgdEndEffector(q)
            #print ("dotq :",dotq)
            #computation of the coordinates to check if the target is reach or not

            estimState = estimNextState
            i += 1
            t += self.rs.dt

        cost += self.trajCost.computeFinalReward(self.arm, t, coordHand,
                                                 self.sizeOfTarget)
        lastX = -1000  #used to ignore dispersion when the target line is not crossed
        if coordHand[1] >= self.rs.YTarget:
            lastX = coordHand[0]
        return cost, t, lastX