def reconstruct(Iorig, I, Y, out_size, threshold=.9): net_stride = 2**4 side = ((208. + 40.) / 2.) / net_stride # 7.75, 'alpha' in the paper Probs = Y[..., 0] Affines = Y[..., 2:] rx, ry = Y.shape[:2] ywh = Y.shape[1::-1] iwh = np.array(I.shape[1::-1], dtype=float).reshape((2, 1)) xx, yy = np.where(Probs > threshold) WH = getWH(I.shape) MN = WH / net_stride vxx = vyy = 0.5 #alpha base = lambda vx, vy: np.matrix([[-vx, -vy, 1.], [vx, -vy, 1.], [vx, vy, 1.], [-vx, vy, 1.]]).T labels = [] for i in range(len(xx)): y, x = xx[i], yy[i] affine = Affines[y, x] prob = Probs[y, x] mn = np.array([float(x) + .5, float(y) + .5]) A = np.reshape(affine, (2, 3)) A[0, 0] = max(A[0, 0], 0.) A[1, 1] = max(A[1, 1], 0.) pts = np.array(A * base(vxx, vyy)) #*alpha pts_MN_center_mn = pts * side pts_MN = pts_MN_center_mn + mn.reshape((2, 1)) pts_prop = pts_MN / MN.reshape((2, 1)) labels.append(DLabel(0, pts_prop, prob)) final_labels = nms(labels, .1) TLps = [] if len(final_labels): final_labels.sort(key=lambda x: x.prob(), reverse=True) for i, label in enumerate(final_labels): t_ptsh = getRectPts(0, 0, out_size[0], out_size[1]) ptsh = np.concatenate((label.pts * getWH(Iorig.shape).reshape( (2, 1)), np.ones((1, 4)))) H = find_T_matrix(ptsh, t_ptsh) Ilp = cv2.warpPerspective(Iorig, H, out_size, borderValue=.0) TLps.append(Ilp) return final_labels, TLps
def __pts2xys(self,pts): N = pts.shape[1] pts = pts*getWH(self.Iorig.shape).reshape((2,1)) pts = np.concatenate((pts,np.ones((1,N)))) pts = np.squeeze(np.array(np.matmul(self.R,pts))) pts = pts[:2]/pts[2] return pts
def reset_view(self): self.cx, self.cy = .5,.5 wh = np.array([self.width,self.height],dtype=float) self.zoom_factor = (wh/getWH(self.Iorig.shape)).min() self.mouse_center = np.array([.5,.5]) self.angles = np.array([0.,0.,0.]) self._setPerspective()
def updatePerspectiveMatrix(self): zf = self.zoom_factor w,h = getWH(self.Iorig.shape) self.dx = self.cx*w*zf - self.width/2. self.dy = self.cy*h*zf - self.height/2. R = np.eye(3) R = np.matmul(R,np.matrix([[zf,0,-self.dx],[0,zf,-self.dy],[0,0,1]],dtype=float)) R = np.matmul(R,perspective_transform((w,h),angles=self.angles)) self.R = R self.Rinv = np.linalg.inv(R)
def rectifyToPts(self,pts): if pts.shape[1] != 4: return ptsh = pts*getWH(self.Iorig.shape).reshape((2,1)) ptsh = np.concatenate((ptsh,np.ones((1,4)))) to_pts = self.__pts2xys(pts) wi,hi = (to_pts.min(1)[:2]).tolist() wf,hf = (to_pts.max(1)[:2]).tolist() to_pts = np.matrix([[wi,wf,wf,wi],[hi,hi,hf,hf],[1,1,1,1]]) self.R = find_T_matrix(ptsh,to_pts) self.Rinv = np.linalg.inv(self.R) self._setPerspective(update=False)
def augment_sample(I,pts,dim): maxsum,maxangle = 120,np.array([80.,80.,45.]) angles = np.random.rand(3)*maxangle if angles.sum() > maxsum: angles = (angles/angles.sum())*(maxangle/maxangle.sum()) I = im2single(I) iwh = getWH(I.shape) whratio = random.uniform(2.,4.) wsiz = random.uniform(dim*.2,dim*1.) hsiz = wsiz/whratio dx = random.uniform(0.,dim - wsiz) dy = random.uniform(0.,dim - hsiz) pph = getRectPts(dx,dy,dx+wsiz,dy+hsiz) pts = pts*iwh.reshape((2,1)) T = find_T_matrix(pts2ptsh(pts),pph) H = perspective_transform((dim,dim),angles=angles) H = np.matmul(H,T) Iroi,pts = project(I,H,pts,dim) hsv_mod = np.random.rand(3).astype('float32') hsv_mod = (hsv_mod - .5)*.3 hsv_mod[0] *= 360 Iroi = hsv_transform(Iroi,hsv_mod) Iroi = np.clip(Iroi,0.,1.) pts = np.array(pts) if random.random() > .5: Iroi,pts = flip_image_and_pts(Iroi,pts) tl,br = pts.min(1),pts.max(1) llp = Label(0,tl,br) return Iroi,llp,pts
def mouse_callback(self,event,x,y,flags,param): mc = np.array([x,y],dtype=float) mc = np.matmul(self.Rinv,np.append(mc,1.)) mc = np.squeeze(np.array(mc)) self.mouse_center = (mc[:2]/mc[2])/getWH(self.Iorig.shape)
def __pt2xy(self,pt): pt = np.squeeze(np.array(np.matmul(self.R,np.append(pt*getWH(self.Iorig.shape),1.)))) pt = pt[:2]/pt[2] return tuple(pt.astype(int).tolist())