Пример #1
0
    def test_x_squared_optimization_bfgs(self):
        def objective_func(x):
            return x**2

        var_init = np.array([2])
        optimizer = Optimizer(objective_func, var_init)
        min_value, var_value = optimizer.bfgs_optimize(num_iterations=2000)
        self.assertAlmostEqual(min_value, 0, places=5)
        self.assertAlmostEqual(var_value[0], 0, places=5)
Пример #2
0
    def test_x_y_z_squared_optimization_bfgs(self):
        def objective_func(x, y, z):
            return x**2 + y**2 + z**2

        var_init = np.array([-15, 100, -20])
        optimizer = Optimizer(objective_func, var_init)
        min_value, var_value = optimizer.bfgs_optimize(num_iterations=2000)
        self.assertAlmostEqual(min_value, 0, places=5)
        self.assertAlmostEqual(var_value[0], 0, places=5)
        self.assertAlmostEqual(var_value[1], 0, places=5)
        self.assertAlmostEqual(var_value[2], 0, places=5)

        def objective_func(x):
            return x[0]**2 + x[1]**2 + x[2]**2

        var_init = np.array([-15, 100, -20])
        optimizer = Optimizer(objective_func, var_init, scalar=False)
        min_value, var_value = optimizer.bfgs_optimize(tolerance=0.0000001,
                                                       num_iterations=2000)
        self.assertAlmostEqual(min_value, 0, places=4)
        self.assertAlmostEqual(var_value[0], 0, places=4)
        self.assertAlmostEqual(var_value[1], 0, places=4)
        self.assertAlmostEqual(var_value[2], 0, places=4)