def create_inversion_dict_stage(cmt_file_db, param_path, task_counter): """Creates stage for the creation of the inversion files. This stage is tiny, but required before the actual inversion. :param cmt_file_db: :param param_path: :param task_counter: :return: """ # Get database parameter path databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Function inv_dict_func = os.path.join(bin_path, "write_inversion_dicts.py") # Create Process Paths Stage (CPP) # Create a Stage object inv_dict_stage = Stage() inv_dict_stage.name = "Creating" # Create Task inv_dict_task = Task() # This way the task gets the name of the path file inv_dict_task.name = "Inversion-Dictionaries" inv_dict_task.pre_exec = [ # Conda activate DB_params["conda-activate"] ] inv_dict_task.executable = [DB_params["bin-python"]] # Assign exec # to the task inv_dict_task.arguments = [ inv_dict_func, "-f", cmt_file_db, "-p", param_path ] # In the future maybe to database dir as a total log? inv_dict_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), inv_dict_task.name)) inv_dict_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), inv_dict_task.name)) inv_dict_stage.add_tasks(inv_dict_task) task_counter += 1 return inv_dict_stage, task_counter
def call_create_entry(cmt_filename, param_path, task_counter): """Simply calls the binary to create an entry without making it a stage. Hence, it would be run prior to the pipeline start. :param cmt_filename: cmt_filename from wherever :param param_path: path to parameter files :param task_counter: total task count up until now in pipeline :return: nothing as it is simply a function call. """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_filename) # Path to function create_database_func = os.path.join(bin_path, "create_entry.py") if DB_params["verbose"]: print("Creating the entry outside of the pipeline!") # Create command -N nodes, -n tasks, -D change directory bash_command = "%s\n %s %s %s\n %s" \ % (DB_params["conda-activate"], DB_params["bin-python"], create_database_func, cmt_filename, DB_params["conda-deactivate"]) create_entry_t = "database-entry" # In the future maybe to database dir as a total log? stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), create_entry_t)) stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), create_entry_t)) if DB_params["verbose"]: # Send command subprocess.check_output(bash_command, shell=True) else: # Send command with open(stdout, "wb") as out, open(stderr, "wb") as err: subprocess.check_output(bash_command, shell=True, stderr=err) # Increase task-counter task_counter += 1 return task_counter
def create_inversion_stage(cmt_file_db, param_path, task_counter): """Creates inversion stage. :param cmt_file_db: :param param_path: :return: """ # Get database parameter path databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Function inversion_func = os.path.join(bin_path, "inversion.py") # Create a Stage object inversion_stage = Stage() inversion_stage.name = "CMT3D" # Create Task inversion_task = Task() # This way the task gets the name of the path file inversion_task.name = "Inversion" inversion_task.pre_exec = [ # Conda activate DB_params["conda-activate"] ] inversion_task.executable = DB_params["bin-python"] # Assign exec # to the task inversion_task.arguments = [ inversion_func, "-f", cmt_file_db, "-p", param_path ] # In the future maybe to database dir as a total log? inversion_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), inversion_task.name)) inversion_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), inversion_task.name)) inversion_stage.add_tasks(inversion_task) return inversion_stage
def create_process_path_files(cmt_file_db, param_path, task_counter): """This function creates the path files used for processing both synthetic and observed data in ASDF format, as well as the following windowing procedure. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param pipelinedir: path to pipeline directory :return: EnTK Stage """ # Get database parameter path databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Process path function create_process_path_bin = os.path.join(bin_path, "create_path_files.py") # Create Process Paths Stage (CPP) # Create a Stage object cpp = Stage() cpp.name = "CreateProcessPaths" # Create Task cpp_t = Task() cpp_t.name = "CPP-Task" cpp_t.pre_exec = [ # Conda activate DB_params["conda-activate"] ] cpp_t.executable = DB_params["bin-python"] # Assign executable # to the task cpp_t.arguments = [create_process_path_bin, cmt_file_db] # In the future maybe to database dir as a total log? cpp_t.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), cpp_t.name)) cpp_t.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), cpp_t.name)) task_counter += 1 cpp.add_tasks(cpp_t) return cpp, task_counter
def write_sources(cmt_file_db, param_path, task_counter): """ This function creates a stage that modifies the CMTSOLUTION files before the simulations are run. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param task_counter: total task count up until now in pipeline :return: EnTK Stage """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Path to function write_source_func = os.path.join(bin_path, "write_sources.py") # Create a Stage object w_sources = Stage() w_sources.name = "Write-Sources" # Create Task for stage w_sources_t = Task() w_sources_t.name = "Task-Sources" w_sources_t.pre_exec = [ # Conda activate DB_params["conda-activate"] ] w_sources_t.executable = DB_params["bin-python"] # # Assign executable # to the task w_sources_t.arguments = [write_source_func, cmt_file_db] # In the future maybe to database dir as a total log? w_sources_t.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), w_sources_t.name)) w_sources_t.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), w_sources_t.name)) # Add Task to the Stage w_sources.add_tasks(w_sources_t) task_counter += 1 return w_sources, task_counter
def call_download_data(cmt_file_db, param_path, task_counter): """Simply calls the binary to download the observed data. :param cmt_file_db: cmt_file in the database :param param_path: path to parameter files :param task_counter: total task count up until now in pipeline :return: nothing as it is simply a function call. """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Path to function download_data_func = os.path.join(bin_path, "request_data.py") if DB_params["verbose"]: print("Download outside pipeline!") # Create command -N nodes, -n tasks, -D change directory bash_command = "%s; %s %s %s; %s" \ % (DB_params["conda-activate"], DB_params["bin-python"], download_data_func, cmt_file_db, DB_params["conda-deactivate"]) datarequest_t = "data-request" # In the future maybe to database dir as a total log? stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), datarequest_t)) stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), datarequest_t)) if DB_params["verbose"]: # Send command subprocess.check_output(bash_command, shell=True) else: # Send command with open(stdout, "wb") as out, open(stderr, "wb") as err: subprocess.check_output(bash_command, shell=True, stderr=err) # Increase task-counter task_counter += 1 return task_counter
def specfem_clean_up(cmt_file_db, param_path, task_counter): """ Cleaning up the simulation directories since we don"t need all the files for the future. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param pipelinedir: path to pipeline directory :return: EnTK Stage """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Database parameters. DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Path to function clean_up_func = os.path.join(bin_path, "clean_up_simdirs.py") # Create a Stage object clean_up = Stage() clean_up.name = "Clean-Up" # Create Task for stage clean_up_t = Task() clean_up_t.name = "Task-Clean-Up" clean_up_t.pre_exec = [ # Conda activate DB_params["conda-activate"] ] clean_up_t.executable = DB_params["bin-python"] # Assign executable # to the task clean_up_t.arguments = [clean_up_func, cmt_file_db] # In the future maybe to database dir as a total log? clean_up_t.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), clean_up_t.name)) clean_up_t.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), clean_up_t.name)) # Add Task to the Stage clean_up.add_tasks(clean_up_t) return clean_up, task_counter
def data_request(cmt_file_db, param_path, task_counter): """ This function creates the request for the observed data and returns it as an EnTK Stage :param cmt_file_db: cmt_file in the database :param param_path: path to parameter file directory :param task_counter: total task count up until now in pipeline :return: EnTK Stage """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # # Path to function request_data_func = os.path.join(bin_path, "request_data.py") # Create a Stage object datarequest = Stage() datarequest_t = Task() datarequest_t.name = "data-request" datarequest_t.pre_exec = [ # Conda activate DB_params["conda-activate"] ] datarequest_t.executable = DB_params["bin-python"] # Assign executable # to the task datarequest_t.arguments = [request_data_func, cmt_file_db] # In the future maybe to database dir as a total log? datarequest_t.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), datarequest_t.name)) datarequest_t.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), datarequest_t.name)) # Add Task to the Stage datarequest.add_tasks(datarequest_t) # Increase task-counter task_counter += 1 return datarequest, task_counter
def create_entry(cmt_filename, param_path, task_counter): """This function creates the Entk stage for creation of a database entry. :param cmt_filename: cmt_filename :param param_path: parameter directory :param pipelinedir: Directory of the pipeline :return: EnTK Stage """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_filename) # Create a Stage object database_entry = Stage() t1 = Task() t1.name = "database-entry" t1.pre_exec = PRE_EXECS t1.executable = 'create-entry' # Assign # executable to the task t1.arguments = ['-f %s' % cmt_filename, '-p %s' % param_path] # In the future maybe to database dir as a total log? t1.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), t1.name)) t1.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), t1.name)) # Increase task-counter task_counter += 1 # Add Task to the Stage database_entry.add_tasks(t1) return database_entry, task_counter
def workflow(cmt_filename, param_path): """This function submits the complete workflow :param cmt_filename: str containing the path to the cmt solution that is supposed to be inverted for Usage: ```bash python 1pipeline <path/to/cmtsolution> ``` """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_filename) # Earthquake file in the database cmt_file_db = os.path.join(Cdir, "C" + Cid + ".cmt") # Create a counter for all tasks in one pipeline task_counter = 0 # Create a Pipeline object p = Pipeline() if HEADNODE_AVAILABLE: # ---- Create Database Entry --------------------------------------------- # # Create Database entry stage: database_entry_stage, task_counter = create_entry( cmt_filename, param_path, task_counter) # Add Stage to the Pipeline p.add_stages(database_entry_stage) # ---- REQUEST DATA ------------------------------------------------- # # # Request data stage # datarequest_stage, task_counter = data_request(cmt_file_db, # param_path, # task_counter) # # # Add Stage to the Pipeline # p.add_stages(datarequest_stage) else: # Create the entry now before running the pipeline task_counter = call_create_entry(cmt_filename, param_path, task_counter) # # # Download the data from the headnode before running the pipeline # task_counter = call_download_data(cmt_file_db, param_path, # task_counter) # ---- Write Sources ---------------------------------------------------- # # # Create Source modification stage # w_sources_stage, task_counter = write_sources(cmt_file_db, param_path, # task_counter) # # # Add Stage to the Pipeline # p.add_stages(w_sources_stage) # ---- Run Specfem ------------------------------------------------------ # # # Create Specfem Stage # runSF3D_stage, task_counter = run_specfem(cmt_file_db, # param_path, # task_counter) # # # Add Simulation stage to the Pipeline # p.add_stages(runSF3D_stage) # # # ---- Clean Up Specfem ------------------------------------------------- # # # # Create clean_up stage # clean_up_stage, task_counter = specfem_clean_up(cmt_file_db, # param_path, # task_counter) # # # Add Stage to the Pipeline # p.add_stages(clean_up_stage) # ---- Convert to ASDF -------------------------------------------------- # # Create conversion stage conversion_stage, task_counter = convert_traces(cmt_file_db, param_path, task_counter) # Add stage to pipeline p.add_stages(conversion_stage) # ---- Create Process Path files ---------------------------------------- # # Create Process Stage Pipeline process_path_stage, task_counter = create_process_path_files( cmt_file_db, param_path, task_counter) p.add_stages(process_path_stage) # ---- Process Traces --------------------------------------------------- # # Create processing stage processing_stages, task_counter = create_processing_stage( cmt_file_db, param_path, task_counter) for stage in processing_stages: p.add_stages(stage) # ---- Window Traces ---------------------------------------------------- # # Create processing stage windowing_stages, task_counter = create_windowing_stage( cmt_file_db, param_path, task_counter) for windowing_stage in windowing_stages: p.add_stages(windowing_stage) # ---- Create Inversion Dictionaries------------------------------------- # # Create processing stage inv_dict_stage, task_counter = create_inversion_dict_stage( cmt_file_db, param_path, task_counter) p.add_stages(inv_dict_stage) # ---- Inversion -------------------------------------------------------- # # Create processing stage inversion_stage = create_inversion_stage(cmt_file_db, param_path, task_counter) p.add_stages(inversion_stage) # ============== RUNNING THE PIPELINE ==================================== # # Create Application Manager appman = AppManager(hostname=hostname, port=port) # Compute the necessary walltime from walltime/per simulation # Load parameters specfem_specs = read_yaml_file( os.path.join(param_path, "SpecfemParams/SpecfemParams.yml")) # Get twalltime from walltime specification in the parameter file. walltime_per_simulation = specfem_specs["walltime"].split(":") hours_in_min = float(walltime_per_simulation[0]) * 60 min_in_min = float(walltime_per_simulation[1]) sec_in_min = float(walltime_per_simulation[2]) / 60 cpus = int(specfem_specs["cpus"]) tasks = int(specfem_specs["tasks"]) # Add times to get full simulation time. The 45 min are accounting for # everything that is not simulation time total_min = int(1/math.ceil(float(cpus)/40) \ * 10 * int(round(hours_in_min + min_in_min + sec_in_min)) + 45) # Create a dictionary describe four mandatory keys: # resource, walltime, cpus etc. # resource is "local.localhost" to execute locally # Define which resources to get depending on how specfem is run! if specfem_specs["GPU_MODE"] is False: # res_dict_cpu = { # "resource": "princeton.tiger_cpu", # "project": "geo", # "queue": "cpu", # "schema": "local", # "walltime": total_min, # "cpus": int(specfem_specs["cpus"]), # } res_dict_cpu = { "resource": "princeton.tiger_cpu", "project": "geo", "queue": "cpu", "schema": "local", "walltime": 45, "cpus": 20 } else: res_dict_gpu = { "resource": "princeton.tiger_gpu", "project": "geo", "queue": "gpu", "schema": "local", "walltime": 300, "cpus": int(specfem_specs["cpus"]), "gpus": int(specfem_specs["gpus"]) } # Assign resource request description to the Application Manager appman.resource_desc = res_dict_cpu # Assign the workflow as a set or list of Pipelines to the Application Manager # Note: The list order is not guaranteed to be preserved appman.workflow = set([p]) # Run the Application Manager appman.run()
def create_windowing_stage(cmt_file_db, param_path, task_counter): """This function creates the ASDF windowing stage. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param pipelinedir: path to pipeline directory :return: EnTK Stage """ # Get database parameter path databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Windowing parameter file directory window_process_dir = os.path.join(param_path, "CreateWindows") # Window path list # Important step! This creates a windowing list prior to having created # the actual window path files. It is tested so it definitely works! # This way the windowing processes can be distributed for each ASDF file # pair on one processor (No MPI support!) window_path_list, _ = get_windowing_list(cmt_file_db, window_process_dir, verbose=False) # Process path function window_func = os.path.join(bin_path, "window_selection_asdf.py") # The following little work around help getting around the fact that # multiple tasks cannot read the same file. # Create two stages one for #bodywaves or general entries and one for # surfaces waves. bodywave_list = [] surfacewave_list = [] for file in window_path_list: name = os.path.basename(file) if "surface" in name: surfacewave_list.append(file) else: bodywave_list.append(file) stage_list = [] if len(bodywave_list) > 0: stage_list.append(bodywave_list) if len(surfacewave_list) > 0: stage_list.append(surfacewave_list) # List of stages stages = [] for window_list in stage_list: # Create Process Paths Stage (CPP) # Create a Stage object window_stage = Stage() window_stage.name = "Windowing" # Loop over process path files for window_path in window_list: # Create Task window_task = Task() # This way the task gets the name of the path file window_task.name = os.path.basename(window_path) window_task.pre_exec = [ # Conda activate DB_params["conda-activate"] ] window_task.executable = [DB_params["bin-python"]] # Assign exec # to the task # Create Argument list arguments = [window_func, "-f", window_path] if DB_params["verbose"]: arguments.append("-v") window_task.arguments = arguments # In the future maybe to database dir as a total log? window_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), window_task.name)) window_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), window_task.name)) window_stage.add_tasks(window_task) task_counter += 1 stages.append(window_stage) return stages, task_counter
def create_processing_stage(cmt_file_db, param_path, task_counter): """This function creates the ASDF processing stage. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param pipelinedir: path to pipeline directory :return: EnTK Stage """ # Get database parameter path databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # Processing param dir process_obs_param_dir = os.path.join(param_path, "ProcessObserved") process_syn_param_dir = os.path.join(param_path, "ProcessSynthetic") # Process path list # Important step! This creates a processing list prior to having created # the actual process path files. It is tested so it definitely works! # this way the processes can be distributed for each ASDF file on one # processor or more (MPI enabled!) processing_list, _, _ = get_processing_list(cmt_file_db, process_obs_param_dir, process_syn_param_dir, verbose=True) # The following little work around help getting around the fact that # multiple tasks cannot read the same file. # Get all available bands bands = [] for file in processing_list: bands.append(os.path.basename(file).split(".")[-2]) bands = list(set(bands)) # List of stages stages = [] for band in bands: # Processing sublist sub_list = [x for x in processing_list if band in x] # Process path function process_func = os.path.join(bin_path, "process_asdf.py") # Create Process Paths Stage (CPP) # Create a Stage object process_stage = Stage() process_stage.name = "Processing" # Number of Processes: N = len(processing_list) # Loop over process path files for process_path in sub_list: # Create Task processing_task = Task() # This way the task gets the name of the path file processing_task.name = "Processing-" \ + os.path.basename(process_path) processing_task.pre_exec = [ # Conda activate DB_params["conda-activate"] ] processing_task.executable = DB_params[ "bin-python"] # Assign exec. # to the task # Create Argument list arguments = [process_func, "-f", process_path] if DB_params["verbose"]: arguments.append("-v") processing_task.arguments = arguments # In the future maybe to database dir as a total log? processing_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), processing_task.name)) processing_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), processing_task.name)) processing_task.cpu_reqs = { "processes": 1, "process_type": "MPI", "threads_per_process": 1, "thread_type": "OpenMP" } task_counter += 1 process_stage.add_tasks(processing_task) stages.append(process_stage) return stages, task_counter
def convert_traces(cmt_file_db, param_path, task_counter): """This function creates the to-ASDF conversion stage. Meaning, in this stage, both synthetic and observed traces are converted to ASDF files. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param pipelinedir: path to pipeline directory :return: EnTK Stage """ databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Load Parameters DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) # File and directory cmt_dir = os.path.dirname(cmt_file_db) sim_dir = os.path.join(cmt_dir, "CMT_SIMs") ## Create a Stage object conversion_stage = Stage() conversion_stage.name = "Convert" # Conversion binary conversion_bin = os.path.join(bin_path, "convert_to_asdf.py") attr = [ "CMT", "CMT_rr", "CMT_tt", "CMT_pp", "CMT_rt", "CMT_rp", "CMT_tp", "CMT_depth", "CMT_lat", "CMT_lon" ] ##### Converting the synthetic data if DB_params["verbose"]: print("\nConverting synthetic traces to ASDF ... \n") for _i, at in enumerate(attr[:DB_params["npar"] + 1]): # Path file syn_path_file = os.path.join(sim_dir, at, at + ".yml") # Create Task for stage c_task = Task() c_task.name = at c_task.pre_exec = [DB_params["conda-activate"]] c_task.executable = DB_params["bin-python"] # Assign executable # to the task arguments = [conversion_bin, "-f", syn_path_file] if DB_params["verbose"]: arguments.append("-v") c_task.arguments = arguments # In the future maybe to database dir as a total log? c_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), c_task.name)) c_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), c_task.name)) # Increase Task counter task_counter += 1 conversion_stage.add_tasks(c_task) ##### Converting the observed data if DB_params["verbose"]: print("\nConverting observed traces to ASDF ... \n") obs_path_file = os.path.join(cmt_dir, "seismograms", "obs", "observed.yml") # Create Task for stage c_task = Task() c_task.name = "Observed" c_task.pre_exec = [DB_params["conda-activate"]] c_task.executable = DB_params["bin-python"] # Assign executable # to the task # Create Argument list arguments = [conversion_bin, "-f", obs_path_file] if DB_params["verbose"]: arguments.append("-v") c_task.arguments = arguments # In the future maybe to database dir as a total log? c_task.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), c_task.name)) c_task.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), c_task.name)) # Increase Task counter task_counter += 1 conversion_stage.add_tasks(c_task) return conversion_stage, task_counter
def run_specfem(cmt_file_db, param_path, task_counter): """ This function runs the necessary Specfem simulations. :param cmt_file_db: cmtfile in the database :param param_path: path to parameter file directory :param task_counter: total task count up until now in pipeline :return: EnTK Stage """ # Get Database parameters databaseparam_path = os.path.join(param_path, "Database/DatabaseParameters.yml") # Database parameters. DB_params = read_yaml_file(databaseparam_path) # Earthquake specific database parameters: Dir and Cid Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db) specfemspec_path = os.path.join(param_path, "SpecfemParams/SpecfemParams.yml") comp_and_modules_path = os.path.join( param_path, "SpecfemParams/" "CompilersAndModules.yml") # Load Parameters specfemspecs = read_yaml_file(specfemspec_path) cm_dict = read_yaml_file(comp_and_modules_path) # Simulations to be run attr = [ "CMT", "CMT_rr", "CMT_tt", "CMT_pp", "CMT_rt", "CMT_rp", "CMT_tp", "CMT_depth", "CMT_lat", "CMT_lon" ] # Simulation directory simdir = os.path.join(os.path.dirname(cmt_file_db), "CMT_SIMs") # Create a Stage object runSF3d = Stage() runSF3d.name = "Simulation" for at in attr: sf_t = Task() sf_t.name = "run-" + at # Module Loading sf_t.pre_exec = [ # Get rid of existing modules "module purge" ] # Append to pre_execution module list. for module in cm_dict["modulelist"]: sf_t.pre_exec.append("module load %s" % module) if specfemspecs["GPU_MODE"] is True: sf_t.pre_exec.append("module load %s" % cm_dict["gpu_module"]) # Change directory to specfem directories sf_t.pre_exec.append( # Change directory "cd %s" % os.path.join(simdir, at)) sf_t.executable = "./bin/xspecfem3D" # Assigned executable # In the future maybe to database dir as a total log? sf_t.stdout = os.path.join( "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), sf_t.name)) sf_t.stderr = os.path.join( "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" % (Cid, str(task_counter).zfill(4), sf_t.name)) print(sf_t.cpu_reqs) # Increase Task counter task_counter += 1 # Add Task to the Stage runSF3d.add_tasks(sf_t) return runSF3d, task_counter