'img_indices': [373, 413, 428, 468], 'cnnid': 26, 'iterations': 100, 'lr': 0.01, 'octave_scale': 1.2, 'num_octaves': 10, 'device': 'cuda' } args = argparse.Namespace(**args) # build model model = Model( make_layers([ 32, 32, 32, 'M', 64, 64, 64, 'M', 128, 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M' ]) ).to(args.device) # load checkpoint checkpoint = torch.load(args.ckptpath) model.load_state_dict(checkpoint['model_state_dict']) # prepare dataset valid_paths, valid_labels = get_paths_labels(os.path.join(args.dataset_dir, 'validation')) valid_set = ImgDataset(valid_paths, valid_labels, 512, data_transforms['test']) # dream & deep_dream layer_activations = None
'dataset_dir': sys.argv[1], 'output_dir': sys.argv[2], 'img_indices': [373, 413, 428, 468], 'cnnid': 26, 'iterations': 100, 'lr': 0.01, 'octave_scale': 1.2, 'num_octaves': 10, 'device': 'cuda' } args = argparse.Namespace(**args) # build model model = Model( make_layers([ 32, 32, 32, 'M', 64, 64, 64, 'M', 128, 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M' ])).to(args.device) # load checkpoint checkpoint = torch.load(args.ckptpath) model.load_state_dict(checkpoint['model_state_dict']) # prepare dataset valid_paths, valid_labels = get_paths_labels( os.path.join(args.dataset_dir, 'validation')) valid_set = ImgDataset(valid_paths, valid_labels, 512, data_transforms['test']) # dream & deep_dream layer_activations = None