Пример #1
0
def worker(gpu, ngpus_per_node, args):
    env_device, train_device = args_initialize(gpu, ngpus_per_node, args)
    train_csv_file, train_csv_writer, eval_csv_file, eval_csv_writer, summary_writer = log_initialize(args, train_device)
    train_env, test_env, observation = env_initialize(args, env_device)

    model = ActorCritic(args.num_stack, train_env.action_space, normalize=args.normalize, name=args.env_name)
    model, optimizer = model_initialize(args, model, train_device)

    shape = (args.num_steps + 1, args.num_ales, args.num_stack, *train_env.observation_space.shape[-2:])
    states = torch.zeros(shape, device=train_device, dtype=torch.float32)
    states[0, :, -1] = observation.to(device=train_device, dtype=torch.float32)

    shape = (args.num_steps + 1, args.num_ales)
    values = torch.zeros(shape, device=train_device, dtype=torch.float32)
    logits = torch.zeros((args.num_steps + 1, args.num_ales, train_env.action_space.n), device=train_device, dtype=torch.float32)
    returns = torch.zeros(shape, device=train_device, dtype=torch.float32)

    shape = (args.num_steps, args.num_ales)
    rewards = torch.zeros(shape, device=train_device, dtype=torch.float32)
    masks = torch.zeros(shape, device=train_device, dtype=torch.float32)
    actions = torch.zeros(shape, device=train_device, dtype=torch.long)

    # These variables are used to compute average rewards for all processes.
    episode_rewards = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    final_rewards = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    episode_lengths = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    final_lengths = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)

    if args.use_gae:
        gae = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)

    maybe_npy = lambda a: a.numpy() if args.use_openai else a

    num_frames_per_iter = args.num_ales * args.num_steps
    args.num_minibatches = num_frames_per_iter / args.batch_size
    total_steps = math.ceil(args.t_max / (args.world_size * num_frames_per_iter))

    decay = 1.0 / total_steps
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.ppo_epoch, gamma=1.0 - decay)

    iterator = range(total_steps)
    if args.rank == 0:
        iterator = tqdm(iterator)
        total_time = 0
        evaluation_offset = 0

    train_stream = torch.cuda.Stream()

    torch.cuda.synchronize()

    for update in iterator:

        T = args.world_size * update * num_frames_per_iter
        if (args.rank == 0) and (T >= evaluation_offset):
            evaluation_offset += args.evaluation_interval
            eval_lengths, eval_rewards = test(args, model, test_env)

            lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
            rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
            length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
            reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
            print('[training time: {}] {}'.format(format_time(total_time), ' --- '.join([length_data, reward_data])))

            if eval_csv_writer and eval_csv_file:
                eval_csv_writer.writerow([T, total_time, rmean, rmedian, rmin, rmax, rstd, lmean, lmedian, lmin, lmax, lstd])
                eval_csv_file.flush()

            if args.plot:
                summary_writer.add_scalar('eval/rewards_mean', rmean, T, walltime=total_time)
                summary_writer.add_scalar('eval/lengths_mean', lmean, T, walltime=total_time)

        start_time = time.time()

        with torch.no_grad():

            for step in range(args.num_steps):
                nvtx.range_push('train:step')
                value, logit = model(states[step])

                # store values and logits
                values[step], logits[step] = value.squeeze(-1), logit.squeeze(-1)

                # convert actions to numpy and perform next step
                probs = torch.clamp(F.softmax(logit, dim=1), min = 0.00001, max = 0.99999)
                probs_action = probs.multinomial(1).to(env_device)
                observation, reward, done, info = train_env.step(maybe_npy(probs_action))

                if args.use_openai:
                    # convert back to pytorch tensors
                    observation = torch.from_numpy(observation)
                    reward = torch.from_numpy(reward)
                    done = torch.from_numpy(done.astype(np.uint8))
                else:
                    observation = observation.squeeze(-1).unsqueeze(1)

                # move back to training memory
                observation = observation.to(device=train_device)
                reward = reward.to(device=train_device, dtype=torch.float32)
                done = done.to(device=train_device, dtype=torch.bool)
                probs_action = probs_action.to(device=train_device, dtype=torch.long)

                not_done = 1.0 - done.float()

                # update rewards and actions
                actions[step].copy_(probs_action.view(-1))
                masks[step].copy_(not_done)
                rewards[step].copy_(reward.sign())

                # update next observations
                states[step + 1, :, :-1].copy_(states[step, :, 1:])
                states[step + 1] *= not_done.view(-1, *[1] * (observation.dim() - 1))
                states[step + 1, :, -1].copy_(observation.view(-1, *states.size()[-2:]))

                # update episodic reward counters
                episode_rewards += reward
                final_rewards[done] = episode_rewards[done]
                episode_rewards *= not_done

                episode_lengths += not_done
                final_lengths[done] = episode_lengths[done]
                episode_lengths *= not_done
                nvtx.range_pop()

            returns[-1] = values[-1] = model(states[-1])[0].data.squeeze(-1)

            if args.use_gae:
                gae.zero_()
                for step in reversed(range(args.num_steps)):
                    delta = rewards[step] + (args.gamma * values[step + 1] * masks[step]) - values[step]
                    gae = delta + (args.gamma * args.tau * masks[step] * gae)
                    returns[step] = gae + values[step]
            else:
                for step in reversed(range(args.num_steps)):
                    returns[step] = rewards[step] + (args.gamma * returns[step + 1] * masks[step])

            log_probs = F.log_softmax(logits[:-1].view(-1, train_env.action_space.n), dim=1)
            action_log_probs = log_probs.gather(1, actions.view(-1).unsqueeze(-1))
            advantages = returns[:-1].view(-1).unsqueeze(-1) - values[:-1].view(-1).unsqueeze(-1)
            advantages = (advantages - advantages.mean()) / (advantages.std() + float(np.finfo(np.float32).eps))

        total_value_loss = 0.0
        total_policy_loss = 0.0
        total_dist_entropy = 0.0

        nvtx.range_push('train:loader')
        states_view = states[:-1].view(-1, *states.size()[-3:])
        actions_view = actions.view(-1)
        returns_view = returns[:-1].view(-1)
        train_dataset = torch.utils.data.TensorDataset(states_view, actions_view, action_log_probs, returns_view, advantages)

        train_sampler = None
        if args.distributed:
            train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)

        train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
                                                   num_workers=0, pin_memory=False, sampler=train_sampler)
        nvtx.range_pop()

        with torch.cuda.stream(train_stream):
            for epoch in range(args.ppo_epoch):
                nvtx.range_push('train:epoch_step')

                if args.distributed:
                    train_sampler.set_epoch(epoch)

                prefetcher = data_prefetcher(train_loader)
                local_states, local_actions, local_action_log_probs, local_returns, local_advantages = prefetcher.next()

                while local_states is not None:
                    batch_values, batch_logits = model(local_states)
                    batch_log_probs = F.log_softmax(batch_logits, dim=1)
                    batch_action_log_probs = batch_log_probs.gather(1, local_actions.unsqueeze(-1))

                    batch_probs = F.softmax(batch_logits, dim=1)
                    batch_dist_entropy = -(batch_log_probs * batch_probs).sum(-1).mean()

                    ratio = torch.exp(batch_action_log_probs - local_action_log_probs)
                    surrogate1 = ratio * local_advantages
                    surrogate2 = torch.clamp(ratio, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon) * local_advantages
                    batch_policy_loss = -torch.min(surrogate1, surrogate2).mean()
                    batch_value_loss = F.mse_loss(local_returns.unsqueeze(-1), batch_values) / 2.0

                    loss = batch_value_loss * args.value_loss_coef + batch_policy_loss - batch_dist_entropy * args.entropy_coef
                    optimizer.zero_grad()
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                    optimizer.step()

                    total_value_loss += batch_value_loss.item()
                    total_policy_loss += batch_policy_loss.item()
                    total_dist_entropy += batch_dist_entropy.item()

                    local_states, local_actions, local_action_log_probs, local_returns, local_advantages = prefetcher.next()
                scheduler.step()
                nvtx.range_pop()

        torch.cuda.synchronize()

        states[0].copy_(states[-1])

        if args.rank == 0:
            iter_time = time.time() - start_time
            total_time += iter_time

            value_loss = total_value_loss / (args.ppo_epoch * args.num_minibatches)
            policy_loss = total_policy_loss / (args.ppo_epoch * args.num_minibatches)
            dist_entropy = total_dist_entropy / (args.ppo_epoch * args.num_minibatches)

            if args.plot:
                writer.add_scalar('train/rewards_mean', final_rewards.mean().item(), T, walltime=total_time)
                writer.add_scalar('train/lengths_mean', final_lengths.mean().item(), T, walltime=total_time)
                writer.add_scalar('train/learning_rate', scheduler.get_lr()[0], T, walltime=total_time)
                writer.add_scalar('train/value_loss', value_loss, T, walltime=total_time)
                writer.add_scalar('train/policy_loss', policy_loss, T, walltime=total_time)
                writer.add_scalar('train/entropy', dist_entropy, T, walltime=total_time)

            progress_data = callback(args, model, T, iter_time, final_rewards, final_lengths,
                                     value_loss, policy_loss, dist_entropy, train_csv_writer, train_csv_file)
            iterator.set_postfix_str(progress_data)

    if args.plot and (args.rank == 0):
        writer.close()

    if args.use_openai:
        train_env.close()
    if args.use_openai_test_env:
        test_env.close()
Пример #2
0
def worker(gpu, ngpus_per_node, callback, args):
    args.gpu = gpu

    if (args.num_ales % args.world_size) != 0:
        raise ValueError(
            'The num_ales({}) should be evenly divisible by the world_size({})'
            .format(args.num_ales, args.world_size))
    args.num_ales = int(args.num_ales / args.world_size)

    if (args.batch_size % args.world_size) != 0:
        raise ValueError(
            'The batch_size({}) should be evenly divisible by the world_size({})'
            .format(args.batch_size, args.world_size))
    args.batch_size = int(args.num_ales / args.world_size)

    num_frames_per_iter = args.num_ales * args.num_steps
    args.num_minibatches = num_frames_per_iter / args.batch_size
    total_steps = math.ceil(args.t_max /
                            (args.world_size * num_frames_per_iter))

    if args.distributed:
        args.seed += args.gpu
        torch.cuda.set_device(args.gpu)

        args.rank = int(os.environ['RANK']) if 'RANK' in os.environ else 0
        if args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + args.gpu

        torch.distributed.init_process_group(
            backend='nccl',
            init_method='tcp://127.0.0.1:8632',
            world_size=args.world_size,
            rank=args.rank)
    else:
        args.rank = 0

    if args.lr_scale:
        scaled_lr = args.lr * math.sqrt((args.num_ales * args.world_size) / 16)
        if args.rank == 0:
            print('Scaled learning rate from {:4.4f} to {:4.4f}'.format(
                args.lr, scaled_lr))
        args.lr = scaled_lr

    args.use_cuda_env = args.use_cuda_env and torch.cuda.is_available()
    args.no_cuda_train = (not args.no_cuda_train) and torch.cuda.is_available()
    args.verbose = args.verbose and (args.rank == 0)

    env_device = torch.device(
        'cuda', args.gpu) if args.use_cuda_env else torch.device('cpu')
    train_device = torch.device('cuda', args.gpu) if (
        args.no_cuda_train == False) else torch.device('cpu')

    np.random.seed(args.seed)
    torch.manual_seed(np.random.randint(1, 10000))
    if args.use_cuda_env or (args.no_cuda_train == False):
        torch.cuda.manual_seed(np.random.randint(1, 10000))

    if args.rank == 0:
        if args.output_filename:
            train_csv_file = open(args.output_filename, 'w', newline='')
            train_csv_file.write(json.dumps(vars(args)))
            train_csv_file.write('\n')
            train_csv_writer = csv.writer(train_csv_file, delimiter=',')
            train_csv_writer.writerow([
                'frames', 'fps', 'total_time', 'rmean', 'rmedian', 'rmin',
                'rmax', 'lmean', 'lmedian', 'lmin', 'lmax', 'entropy',
                'value_loss', 'policy_loss'
            ])

            eval_output_filename = '.'.join([
                ''.join(args.output_filename.split('.')[:-1] + ['_test']),
                'csv'
            ])
            eval_csv_file = open(eval_output_filename, 'w', newline='')
            eval_csv_file.write(json.dumps(vars(args)))
            eval_csv_file.write('\n')
            eval_csv_writer = csv.writer(eval_csv_file, delimiter=',')
            eval_csv_writer.writerow([
                'frames', 'total_time', 'rmean', 'rmedian', 'rmin', 'rmax',
                'rstd', 'lmean', 'lmedian', 'lmin', 'lmax', 'lstd'
            ])
        else:
            train_csv_file, train_csv_writer = None, None
            eval_csv_file, eval_csv_writer = None, None

        if args.plot:
            from tensorboardX import SummaryWriter
            current_time = datetime.now().strftime('%b%d_%H-%M-%S')
            log_dir = os.path.join(args.log_dir,
                                   current_time + '_' + socket.gethostname())
            writer = SummaryWriter(log_dir=log_dir)
            for k, v in vars(args).items():
                writer.add_text(k, str(v))

        print()
        print('PyTorch  : {}'.format(torch.__version__))
        print('CUDA     : {}'.format(torch.backends.cudnn.m.cuda))
        print('CUDNN    : {}'.format(torch.backends.cudnn.version()))
        print('APEX     : {}'.format('.'.join(
            [str(i) for i in apex.amp.__version__.VERSION])))
        print()

    if train_device.type == 'cuda':
        print(cuda_device_str(train_device.index), flush=True)

    if args.use_openai:
        train_env = create_vectorize_atari_env(
            args.env_name,
            args.seed,
            args.num_ales,
            episode_life=args.episodic_life,
            clip_rewards=False,
            max_frames=args.max_episode_length)
        observation = torch.from_numpy(train_env.reset()).squeeze(1)

        test_env = create_vectorize_atari_env(args.env_name,
                                              args.seed,
                                              args.evaluation_episodes,
                                              episode_life=False,
                                              clip_rewards=False)
        test_env.reset()
    else:
        train_env = AtariEnv(args.env_name,
                             args.num_ales,
                             color_mode='gray',
                             repeat_prob=0.0,
                             device=env_device,
                             rescale=True,
                             episodic_life=args.episodic_life,
                             clip_rewards=False)
        train_env.train()
        observation = train_env.reset(initial_steps=args.ale_start_steps,
                                      verbose=args.verbose).squeeze(-1)

        test_env = AtariEnv(args.env_name,
                            args.evaluation_episodes,
                            color_mode='gray',
                            repeat_prob=0.0,
                            device='cpu',
                            rescale=True,
                            episodic_life=False,
                            clip_rewards=False,
                            frameskip=4)

    model = ActorCritic(args.num_stack,
                        train_env.action_space,
                        normalize=args.normalize,
                        name=args.env_name)
    model = model.to(train_device).train()

    if args.rank == 0:
        print(model)
        args.model_name = model.name

    if args.use_adam:
        optimizer = optim.Adam(model.parameters(), lr=args.lr, amsgrad=True)
    else:
        optimizer = optim.RMSprop(model.parameters(),
                                  lr=args.lr,
                                  eps=args.eps,
                                  alpha=args.alpha)

    decay = 1.0 / total_steps
    scheduler = optim.lr_scheduler.StepLR(optimizer,
                                          step_size=args.ppo_epoch,
                                          gamma=1.0 - decay)

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=args.opt_level,
                                      loss_scale=args.loss_scale)

    if args.distributed:
        model = DDP(model, delay_allreduce=True)

    shape = (args.num_steps + 1, args.num_ales, args.num_stack,
             *train_env.observation_space.shape[-2:])
    states = torch.zeros(shape, device=train_device, dtype=torch.float32)
    states[0, :, -1] = observation.to(device=train_device, dtype=torch.float32)

    shape = (args.num_steps + 1, args.num_ales)
    values = torch.zeros(shape, device=train_device, dtype=torch.float32)
    logits = torch.zeros(
        (args.num_steps + 1, args.num_ales, train_env.action_space.n),
        device=train_device,
        dtype=torch.float32)
    returns = torch.zeros(shape, device=train_device, dtype=torch.float32)

    shape = (args.num_steps, args.num_ales)
    rewards = torch.zeros(shape, device=train_device, dtype=torch.float32)
    masks = torch.zeros(shape, device=train_device, dtype=torch.float32)
    actions = torch.zeros(shape, device=train_device, dtype=torch.long)

    # These variables are used to compute average rewards for all processes.
    episode_rewards = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_rewards = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)
    episode_lengths = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_lengths = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)

    if args.use_gae:
        gae = torch.zeros(args.num_ales,
                          device=train_device,
                          dtype=torch.float32)

    maybe_npy = lambda a: a.numpy() if args.use_openai else a

    torch.cuda.synchronize()

    iterator = range(total_steps)
    if args.rank == 0:
        iterator = tqdm(iterator)
        total_time = 0
        evaluation_offset = 0

    train_stream = torch.cuda.Stream()

    for update in iterator:

        T = args.world_size * update * num_frames_per_iter
        if (args.rank == 0) and (T >= evaluation_offset):
            evaluation_offset += args.evaluation_interval
            eval_lengths, eval_rewards = evaluate(args, T, total_time, model,
                                                  test_env, eval_csv_writer,
                                                  eval_csv_file)

            if args.plot:
                writer.add_scalar('eval/rewards_mean',
                                  eval_rewards.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('eval/lengths_mean',
                                  eval_lengths.mean().item(),
                                  T,
                                  walltime=total_time)

        start_time = time.time()

        with torch.no_grad():

            for step in range(args.num_steps):
                nvtx.range_push('train:step')
                value, logit = model(states[step])

                # store values and logits
                values[step], logits[step] = value.squeeze(-1), logit.squeeze(
                    -1)

                # convert actions to numpy and perform next step
                probs = torch.clamp(F.softmax(logit, dim=1),
                                    min=0.00001,
                                    max=0.99999)
                probs_action = probs.multinomial(1).to(env_device)
                observation, reward, done, info = train_env.step(
                    maybe_npy(probs_action))

                if args.use_openai:
                    # convert back to pytorch tensors
                    observation = torch.from_numpy(observation)
                    reward = torch.from_numpy(reward)
                    done = torch.from_numpy(done.astype(np.uint8))
                else:
                    observation = observation.squeeze(-1).unsqueeze(1)

                # move back to training memory
                observation = observation.to(device=train_device)
                reward = reward.to(device=train_device, dtype=torch.float32)
                done = done.to(device=train_device)
                probs_action = probs_action.to(device=train_device,
                                               dtype=torch.long)

                not_done = 1.0 - done.float()

                # update rewards and actions
                actions[step].copy_(probs_action.view(-1))
                masks[step].copy_(not_done)
                rewards[step].copy_(reward.sign())

                # update next observations
                states[step + 1, :, :-1].copy_(states[step, :, 1:])
                states[step + 1] *= not_done.view(
                    -1, *[1] * (observation.dim() - 1))
                states[step + 1, :,
                       -1].copy_(observation.view(-1,
                                                  *states.size()[-2:]))

                # update episodic reward counters
                episode_rewards += reward
                final_rewards[done] = episode_rewards[done]
                episode_rewards *= not_done

                episode_lengths += not_done
                final_lengths[done] = episode_lengths[done]
                episode_lengths *= not_done
                nvtx.range_pop()

            returns[-1] = values[-1] = model(states[-1])[0].data.squeeze(-1)

            if args.use_gae:
                gae.zero_()
                for step in reversed(range(args.num_steps)):
                    delta = rewards[step] + (args.gamma * values[step + 1] *
                                             masks[step]) - values[step]
                    gae = delta + (args.gamma * args.tau * masks[step] * gae)
                    returns[step] = gae + values[step]
            else:
                for step in reversed(range(args.num_steps)):
                    returns[step] = rewards[step] + (
                        args.gamma * returns[step + 1] * masks[step])

            log_probs = F.log_softmax(logits[:-1].view(
                -1, train_env.action_space.n),
                                      dim=1)
            action_log_probs = log_probs.gather(1,
                                                actions.view(-1).unsqueeze(-1))
            advantages = returns[:-1].view(-1).unsqueeze(
                -1) - values[:-1].view(-1).unsqueeze(-1)
            advantages = (advantages - advantages.mean()) / (
                advantages.std() + float(np.finfo(np.float32).eps))

        total_value_loss = 0.0
        total_policy_loss = 0.0
        total_dist_entropy = 0.0

        nvtx.range_push('train:loader')
        states_view = states[:-1].view(-1, *states.size()[-3:])
        actions_view = actions.view(-1)
        returns_view = returns[:-1].view(-1)
        train_dataset = torch.utils.data.TensorDataset(states_view,
                                                       actions_view,
                                                       action_log_probs,
                                                       returns_view,
                                                       advantages)

        train_sampler = None
        if args.distributed:
            train_sampler = torch.utils.data.distributed.DistributedSampler(
                train_dataset)

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=0,
            pin_memory=False,
            sampler=train_sampler)
        nvtx.range_pop()

        with torch.cuda.stream(train_stream):
            for epoch in range(args.ppo_epoch):
                nvtx.range_push('train:epoch_step')

                if args.distributed:
                    train_sampler.set_epoch(epoch)

                prefetcher = data_prefetcher(train_loader)
                local_states, local_actions, local_action_log_probs, local_returns, local_advantages = prefetcher.next(
                )

                while local_states is not None:
                    batch_values, batch_logits = model(local_states)
                    batch_log_probs = F.log_softmax(batch_logits, dim=1)
                    batch_action_log_probs = batch_log_probs.gather(
                        1, local_actions.unsqueeze(-1))

                    batch_probs = F.softmax(batch_logits, dim=1)
                    batch_dist_entropy = -(batch_log_probs *
                                           batch_probs).sum(-1).mean()

                    ratio = torch.exp(batch_action_log_probs -
                                      local_action_log_probs)
                    surrogate1 = ratio * local_advantages
                    surrogate2 = torch.clamp(
                        ratio, 1.0 - args.clip_epsilon,
                        1.0 + args.clip_epsilon) * local_advantages
                    batch_policy_loss = -torch.min(surrogate1,
                                                   surrogate2).mean()
                    batch_value_loss = F.mse_loss(local_returns.unsqueeze(-1),
                                                  batch_values) / 2.0

                    loss = batch_value_loss * args.value_loss_coef + batch_policy_loss - batch_dist_entropy * args.entropy_coef
                    optimizer.zero_grad()
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                    optimizer.step()

                    total_value_loss += batch_value_loss.item()
                    total_policy_loss += batch_policy_loss.item()
                    total_dist_entropy += batch_dist_entropy.item()

                    local_states, local_actions, local_action_log_probs, local_returns, local_advantages = prefetcher.next(
                    )
                scheduler.step()
                nvtx.range_pop()

        torch.cuda.synchronize()

        states[0].copy_(states[-1])

        if args.rank == 0:
            iter_time = time.time() - start_time
            total_time += iter_time

            value_loss = total_value_loss / (args.ppo_epoch *
                                             args.num_minibatches)
            policy_loss = total_policy_loss / (args.ppo_epoch *
                                               args.num_minibatches)
            dist_entropy = total_dist_entropy / (args.ppo_epoch *
                                                 args.num_minibatches)

            if args.plot:
                writer.add_scalar('train/rewards_mean',
                                  final_rewards.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/lengths_mean',
                                  final_lengths.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/learning_rate',
                                  scheduler.get_lr()[0],
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/value_loss',
                                  value_loss,
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/policy_loss',
                                  policy_loss,
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/entropy',
                                  dist_entropy,
                                  T,
                                  walltime=total_time)

            progress_data = callback(args, model, T, iter_time, final_rewards,
                                     final_lengths, value_loss, policy_loss,
                                     dist_entropy, train_csv_writer,
                                     train_csv_file)
            iterator.set_postfix_str(progress_data)

    if args.plot:
        writer.close()

    if args.use_openai:
        train_env.close()
        test_env.close()
Пример #3
0
def worker(gpu, ngpus_per_node, args):
    env_device, train_device = args_initialize(gpu, ngpus_per_node, args)

    double_testing = False

    # openai and cule testing
    if double_testing == False:
        train_env, test_env, observation = env_initialize(args, env_device)
    else:
        use_openai_test_env = args.use_openai_test_env
        args.use_openai_test_env = False
        train_env, test_env, observation = env_initialize(args, env_device)
        args.use_openai_test_env = True
        _, test_env_oai, _ = env_initialize(args, env_device)
        args.use_openai_test_env = use_openai_test_env

    train_csv_file, train_csv_writer, eval_csv_file, eval_csv_writer, summary_writer = log_initialize(
        args, train_device)

    model = ActorCritic(args.num_stack,
                        train_env.action_space,
                        normalize=args.normalize,
                        name=args.env_name)
    model, optimizer = model_initialize(args, model, train_device)

    if (args.num_ales % args.num_minibatches) != 0:
        raise ValueError(
            'Number of ales({}) size is not even divisible by the minibatch size({})'
            .format(args.num_ales, args.num_minibatches))

    if args.num_steps_per_update == -1:
        args.num_steps_per_update = args.num_steps

    minibatch_size = int(args.num_ales / args.num_minibatches)
    step0 = args.num_steps - args.num_steps_per_update
    n_minibatch = -1

    # This is the number of frames GENERATED between two updates
    num_frames_per_iter = args.num_ales * args.num_steps_per_update
    total_steps = math.ceil(args.t_max /
                            (args.world_size * num_frames_per_iter))

    shape = (args.num_steps + 1, args.num_ales, args.num_stack,
             *train_env.observation_space.shape[-2:])
    states = torch.zeros(shape, device=train_device, dtype=torch.float32)
    states[step0, :, -1] = observation.to(device=train_device,
                                          dtype=torch.float32)

    shape = (args.num_steps + 1, args.num_ales)
    values = torch.zeros(shape, device=train_device, dtype=torch.float32)
    logits = torch.zeros(
        (args.num_steps + 1, args.num_ales, train_env.action_space.n),
        device=train_device,
        dtype=torch.float32)
    returns = torch.zeros(shape, device=train_device, dtype=torch.float32)

    shape = (args.num_steps, args.num_ales)
    rewards = torch.zeros(shape, device=train_device, dtype=torch.float32)
    masks = torch.zeros(shape, device=train_device, dtype=torch.float32)
    actions = torch.zeros(shape, device=train_device, dtype=torch.long)

    mus = torch.ones(shape, device=train_device, dtype=torch.float32)
    # pis = torch.zeros(shape, device=train_device, dtype=torch.float32)
    rhos = torch.zeros((args.num_steps, minibatch_size),
                       device=train_device,
                       dtype=torch.float32)

    # These variables are used to compute average rewards for all processes.
    episode_rewards = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_rewards = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)
    episode_lengths = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_lengths = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)

    if args.use_gae:
        raise ValueError('GAE is not compatible with VTRACE')

    maybe_npy = lambda a: a.numpy() if args.use_openai else a

    torch.cuda.synchronize()

    iterator = range(total_steps)
    if args.rank == 0:
        iterator = tqdm(iterator)
        total_time = 0
        evaluation_offset = 0

    for update in iterator:

        T = args.world_size * update * num_frames_per_iter
        if (args.rank == 0) and (T >= evaluation_offset):
            evaluation_offset += args.evaluation_interval

            if double_testing == False:
                eval_lengths, eval_rewards = test(args, model, test_env)

                lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(
                    lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(
                    rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                print('[training time: {}] {}'.format(
                    format_time(total_time),
                    ' --- '.join([length_data, reward_data])))

            else:

                args.use_openai_test_env = False
                eval_lengths, eval_rewards = test(args, model, test_env)
                lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(
                    lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(
                    rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                print('[CuLE CPU] [training time: {}] {}'.format(
                    format_time(total_time),
                    ' --- '.join([length_data, reward_data])))

                args.use_openai_test_env = True
                eval_lengths, eval_rewards = test(args, model, test_env_oai)
                lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(
                    lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(
                    rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                print('[OpAI CPU] [training time: {}] {}'.format(
                    format_time(total_time),
                    ' --- '.join([length_data, reward_data])))

                args.use_openai_test_env = use_openai_test_env

            if eval_csv_writer and eval_csv_file:
                eval_csv_writer.writerow([
                    T, total_time, rmean, rmedian, rmin, rmax, rstd, lmean,
                    lmedian, lmin, lmax, lstd
                ])
                eval_csv_file.flush()

            if args.plot:
                summary_writer.add_scalar('eval/rewards_mean',
                                          rmean,
                                          T,
                                          walltime=total_time)
                summary_writer.add_scalar('eval/lengths_mean',
                                          lmean,
                                          T,
                                          walltime=total_time)

        start_time = time.time()

        with torch.no_grad():

            for step in range(args.num_steps_per_update):
                nvtx.range_push('train:step')
                value, logit = model(states[step0 + step])

                # store values and logits
                values[step0 + step] = value.squeeze(-1)

                # convert actions to numpy and perform next step
                probs = torch.clamp(F.softmax(logit, dim=1),
                                    min=0.00001,
                                    max=0.99999)
                probs_action = probs.multinomial(1).to(env_device)
                # Check if the multinomial threw an exception
                # https://github.com/pytorch/pytorch/issues/7014
                torch.cuda.current_stream().synchronize()
                observation, reward, done, info = train_env.step(
                    maybe_npy(probs_action))

                if args.use_openai:
                    # convert back to pytorch tensors
                    observation = torch.from_numpy(observation)
                    reward = torch.from_numpy(reward)
                    done = torch.from_numpy(done.astype(np.uint8))
                else:
                    observation = observation.squeeze(-1).unsqueeze(1)

                # move back to training memory
                observation = observation.to(device=train_device)
                reward = reward.to(device=train_device, dtype=torch.float32)
                done = done.to(device=train_device, dtype=torch.bool)
                probs_action = probs_action.to(device=train_device,
                                               dtype=torch.long)

                not_done = 1.0 - done.float()

                # update rewards and actions
                actions[step0 + step].copy_(probs_action.view(-1))
                masks[step0 + step].copy_(not_done)
                rewards[step0 + step].copy_(reward.sign())

                #mus[step0 + step] = F.softmax(logit, dim=1).gather(1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1)
                mus[step0 + step] = torch.clamp(F.softmax(logit, dim=1).gather(
                    1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1),
                                                min=0.00001,
                                                max=0.99999)

                # update next observations
                states[step0 + step + 1, :, :-1].copy_(states[step0 + step, :,
                                                              1:])
                states[step0 + step + 1] *= not_done.view(
                    -1, *[1] * (observation.dim() - 1))
                states[step0 + step + 1, :,
                       -1].copy_(observation.view(-1,
                                                  *states.size()[-2:]))

                # update episodic reward counters
                episode_rewards += reward
                final_rewards[done] = episode_rewards[done]
                episode_rewards *= not_done

                episode_lengths += not_done
                final_lengths[done] = episode_lengths[done]
                episode_lengths *= not_done
                nvtx.range_pop()

        n_minibatch = (n_minibatch + 1) % args.num_minibatches
        min_ale_index = int(n_minibatch * minibatch_size)
        max_ale_index = min_ale_index + minibatch_size

        # compute v-trace using the recursive method (remark 1 in IMPALA paper)
        # value_next_step, logit = model(states[-1:, min_ale_index:max_ale_index, :, : ,:].contiguous().view(-1, *states.size()[-3:]))
        # returns[-1, min_ale_index:max_ale_index] = value_next_step.squeeze()
        # for step in reversed(range(args.num_steps)):
        #     value, logit = model(states[step, min_ale_index:max_ale_index, :, : ,:].contiguous().view(-1, *states.size()[-3:]))
        #     pis = F.softmax(logit, dim=1).gather(1, actions[step, min_ale_index:max_ale_index].view(-1).unsqueeze(-1)).view(-1)
        #     c = torch.clamp(pis / mus[step, min_ale_index:max_ale_index], max=c_)
        #     rhos[step, :] = torch.clamp(pis / mus[step, min_ale_index:max_ale_index], max=rho_)
        #     delta_value = rhos[step, :] * (rewards[step, min_ale_index:max_ale_index] + (args.gamma * value_next_step - value).squeeze())
        #     returns[step, min_ale_index:max_ale_index] = value.squeeze() + delta_value + args.gamma * c * \
        #             (returns[step + 1, min_ale_index:max_ale_index] - value_next_step.squeeze())
        #     value_next_step = value

        nvtx.range_push('train:compute_values')
        value, logit = model(
            states[:, min_ale_index:max_ale_index, :, :, :].contiguous().view(
                -1,
                *states.size()[-3:]))
        batch_value = value.detach().view((args.num_steps + 1, minibatch_size))
        batch_probs = F.softmax(logit.detach()[:(args.num_steps *
                                                 minibatch_size), :],
                                dim=1)
        batch_pis = batch_probs.gather(
            1, actions[:, min_ale_index:max_ale_index].contiguous().view(
                -1).unsqueeze(-1)).view((args.num_steps, minibatch_size))
        returns[-1, min_ale_index:max_ale_index] = batch_value[-1]

        with torch.no_grad():
            for step in reversed(range(args.num_steps)):
                c = torch.clamp(batch_pis[step, :] /
                                mus[step, min_ale_index:max_ale_index],
                                max=args.c_hat)
                rhos[step, :] = torch.clamp(
                    batch_pis[step, :] /
                    mus[step, min_ale_index:max_ale_index],
                    max=args.rho_hat)
                delta_value = rhos[step, :] * (
                    rewards[step, min_ale_index:max_ale_index] +
                    (args.gamma * batch_value[step + 1] -
                     batch_value[step]).squeeze())
                returns[step, min_ale_index:max_ale_index] = \
                        batch_value[step, :].squeeze() + delta_value + args.gamma * c * \
                        (returns[step + 1, min_ale_index:max_ale_index] - batch_value[step + 1, :].squeeze())

        value = value[:args.num_steps * minibatch_size, :]
        logit = logit[:args.num_steps * minibatch_size, :]

        log_probs = F.log_softmax(logit, dim=1)
        probs = F.softmax(logit, dim=1)

        action_log_probs = log_probs.gather(
            1, actions[:, min_ale_index:max_ale_index].contiguous().view(
                -1).unsqueeze(-1))
        dist_entropy = -(log_probs * probs).sum(-1).mean()

        advantages = returns[:-1, min_ale_index:max_ale_index].contiguous(
        ).view(-1).unsqueeze(-1) - value

        value_loss = advantages.pow(2).mean()
        policy_loss = -(action_log_probs * rhos.view(-1, 1).detach() * \
                (rewards[:, min_ale_index:max_ale_index].contiguous().view(-1, 1) + args.gamma * \
                returns[1:, min_ale_index:max_ale_index].contiguous().view(-1, 1) - value).detach()).mean()
        nvtx.range_pop()

        nvtx.range_push('train:backprop')
        loss = value_loss * args.value_loss_coef + policy_loss - dist_entropy * args.entropy_coef
        optimizer.zero_grad()

        if args.cpu_train:
            loss.backward()
            master_params = model.parameters()
        else:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            master_params = amp.master_params(optimizer)

        torch.nn.utils.clip_grad_norm_(master_params, args.max_grad_norm)
        optimizer.step()
        nvtx.range_pop()

        nvtx.range_push('train:next_states')
        for step in range(0, args.num_steps_per_update):
            states[:-1, :, :, :, :] = states[1:, :, :, :, :]
            rewards[:-1, :] = rewards[1:, :]
            actions[:-1, :] = actions[1:, :]
            masks[:-1, :] = masks[1:, :]
            mus[:-1, :] = mus[1:, :]
        nvtx.range_pop()

        torch.cuda.synchronize()

        if args.rank == 0:
            iter_time = time.time() - start_time
            total_time += iter_time

            if args.plot:
                summary_writer.add_scalar('train/rewards_mean',
                                          final_rewards.mean().item(),
                                          T,
                                          walltime=total_time)
                summary_writer.add_scalar('train/lengths_mean',
                                          final_lengths.mean().item(),
                                          T,
                                          walltime=total_time)
                summary_writer.add_scalar('train/value_loss',
                                          value_loss,
                                          T,
                                          walltime=total_time)
                summary_writer.add_scalar('train/policy_loss',
                                          policy_loss,
                                          T,
                                          walltime=total_time)
                summary_writer.add_scalar('train/entropy',
                                          dist_entropy,
                                          T,
                                          walltime=total_time)

            progress_data = callback(args, model, T, iter_time, final_rewards,
                                     final_lengths, value_loss, policy_loss,
                                     dist_entropy, train_csv_writer,
                                     train_csv_file)
            iterator.set_postfix_str(progress_data)

    if args.plot and (args.rank == 0):
        writer.close()

    if args.use_openai:
        train_env.close()
    if args.use_openai_test_env:
        test_env.close()
Пример #4
0
def worker(gpu, ngpus_per_node, callback, args):
    args.gpu = gpu

    if args.distributed:
        args.seed += args.gpu
        torch.cuda.set_device(args.gpu)

        args.rank = int(os.environ['RANK']) if 'RANK' in os.environ else 0
        if args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + args.gpu

        torch.distributed.init_process_group(
            backend='nccl',
            init_method='tcp://127.0.0.1:8632',
            world_size=args.world_size,
            rank=args.rank)
    else:
        args.rank = 0

    if (args.num_ales % args.num_minibatches) != 0:
        raise ValueError(
            'Number of ales({}) size is not even divisible by the minibatch size({})'
            .format(args.num_ales, args.num_minibatches))

    if args.num_steps_per_update == -1:
        args.num_steps_per_update = args.num_steps

    minibatch_size = int(args.num_ales / args.num_minibatches)
    step0 = args.num_steps - args.num_steps_per_update
    n_minibatch = -1

    args.use_cuda_env = args.use_cuda_env and torch.cuda.is_available()
    args.no_cuda_train = (not args.no_cuda_train) and torch.cuda.is_available()
    args.verbose = args.verbose and (args.rank == 0)

    env_device = torch.device(
        'cuda', args.gpu) if args.use_cuda_env else torch.device('cpu')
    train_device = torch.device('cuda', args.gpu) if (
        args.no_cuda_train == False) else torch.device('cpu')

    np.random.seed(args.seed)
    torch.manual_seed(np.random.randint(1, 10000))
    if args.use_cuda_env or (args.no_cuda_train == False):
        torch.cuda.manual_seed(np.random.randint(1, 10000))

    if args.rank == 0:
        if args.output_filename:
            train_csv_file = open(args.output_filename, 'w', newline='')
            train_csv_file.write(json.dumps(vars(args)))
            train_csv_file.write('\n')
            train_csv_writer = csv.writer(train_csv_file, delimiter=',')
            train_csv_writer.writerow([
                'frames', 'fps', 'total_time', 'rmean', 'rmedian', 'rmin',
                'rmax', 'lmean', 'lmedian', 'lmin', 'lmax', 'entropy',
                'value_loss', 'policy_loss'
            ])

            eval_output_filename = '.'.join([
                ''.join(args.output_filename.split('.')[:-1] + ['_test']),
                'csv'
            ])
            eval_csv_file = open(eval_output_filename, 'w', newline='')
            eval_csv_file.write(json.dumps(vars(args)))
            eval_csv_file.write('\n')
            eval_csv_writer = csv.writer(eval_csv_file, delimiter=',')
            eval_csv_writer.writerow([
                'frames', 'total_time', 'rmean', 'rmedian', 'rmin', 'rmax',
                'rstd', 'lmean', 'lmedian', 'lmin', 'lmax', 'lstd'
            ])
        else:
            train_csv_file, train_csv_writer = None, None
            eval_csv_file, eval_csv_writer = None, None

        if args.plot:
            from tensorboardX import SummaryWriter
            current_time = datetime.now().strftime('%b%d_%H-%M-%S')
            log_dir = os.path.join(args.log_dir,
                                   current_time + '_' + socket.gethostname())
            writer = SummaryWriter(log_dir=log_dir)
            for k, v in vars(args).items():
                writer.add_text(k, str(v))

        print()
        print('PyTorch  : {}'.format(torch.__version__))
        print('CUDA     : {}'.format(torch.backends.cudnn.m.cuda))
        print('CUDNN    : {}'.format(torch.backends.cudnn.version()))
        print('APEX     : {}'.format('.'.join(
            [str(i) for i in apex.amp.__version__.VERSION])))
        print()

    if train_device.type == 'cuda':
        print(cuda_device_str(train_device.index), flush=True)

    if args.use_openai:
        train_env = create_vectorize_atari_env(
            args.env_name,
            args.seed,
            args.num_ales,
            episode_life=args.episodic_life,
            clip_rewards=False,
            max_frames=args.max_episode_length)
        observation = torch.from_numpy(train_env.reset()).squeeze(1)
    else:
        train_env = AtariEnv(args.env_name,
                             args.num_ales,
                             color_mode='gray',
                             repeat_prob=0.0,
                             device=env_device,
                             rescale=True,
                             episodic_life=args.episodic_life,
                             clip_rewards=False,
                             frameskip=4)
        train_env.train()
        observation = train_env.reset(initial_steps=args.ale_start_steps,
                                      verbose=args.verbose).squeeze(-1)

    if args.use_openai_test_env:
        test_env = create_vectorize_atari_env(args.env_name,
                                              args.seed,
                                              args.evaluation_episodes,
                                              episode_life=False,
                                              clip_rewards=False)
        test_env.reset()
    else:
        test_env = AtariEnv(args.env_name,
                            args.evaluation_episodes,
                            color_mode='gray',
                            repeat_prob=0.0,
                            device='cpu',
                            rescale=True,
                            episodic_life=False,
                            clip_rewards=False,
                            frameskip=4)

    model = ActorCritic(args.num_stack,
                        train_env.action_space,
                        normalize=args.normalize,
                        name=args.env_name)
    model = model.to(train_device).train()

    if args.rank == 0:
        print(model)
        args.model_name = model.name

    if args.use_adam:
        optimizer = optim.Adam(model.parameters(), lr=args.lr, amsgrad=True)
    else:
        optimizer = optim.RMSprop(model.parameters(),
                                  lr=args.lr,
                                  eps=args.eps,
                                  alpha=args.alpha)

    # This is the number of frames GENERATED between two updates
    num_frames_per_iter = args.num_ales * args.num_steps_per_update
    total_steps = math.ceil(args.t_max /
                            (args.world_size * num_frames_per_iter))
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=args.opt_level,
                                      loss_scale=args.loss_scale)

    if args.distributed:
        model = DDP(model, delay_allreduce=True)

    shape = (args.num_steps + 1, args.num_ales, args.num_stack,
             *train_env.observation_space.shape[-2:])
    states = torch.zeros(shape, device=train_device, dtype=torch.float32)
    states[step0, :, -1] = observation.to(device=train_device,
                                          dtype=torch.float32)

    shape = (args.num_steps + 1, args.num_ales)
    values = torch.zeros(shape, device=train_device, dtype=torch.float32)
    logits = torch.zeros(
        (args.num_steps + 1, args.num_ales, train_env.action_space.n),
        device=train_device,
        dtype=torch.float32)
    returns = torch.zeros(shape, device=train_device, dtype=torch.float32)

    shape = (args.num_steps, args.num_ales)
    rewards = torch.zeros(shape, device=train_device, dtype=torch.float32)
    masks = torch.zeros(shape, device=train_device, dtype=torch.float32)
    actions = torch.zeros(shape, device=train_device, dtype=torch.long)

    mus = torch.ones(shape, device=train_device, dtype=torch.float32)
    # pis = torch.zeros(shape, device=train_device, dtype=torch.float32)
    rhos = torch.zeros((args.num_steps, minibatch_size),
                       device=train_device,
                       dtype=torch.float32)

    # These variables are used to compute average rewards for all processes.
    episode_rewards = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_rewards = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)
    episode_lengths = torch.zeros(args.num_ales,
                                  device=train_device,
                                  dtype=torch.float32)
    final_lengths = torch.zeros(args.num_ales,
                                device=train_device,
                                dtype=torch.float32)

    if args.use_gae:
        raise ValueError('GAE is not compatible with VTRACE')

    maybe_npy = lambda a: a.numpy() if args.use_openai else a

    torch.cuda.synchronize()

    iterator = range(total_steps)
    if args.rank == 0:
        iterator = tqdm(iterator)
        total_time = 0
        evaluation_offset = 0

    for update in iterator:

        T = args.world_size * update * num_frames_per_iter
        if (args.rank == 0) and (T >= evaluation_offset):
            evaluation_offset += args.evaluation_interval
            eval_lengths, eval_rewards = evaluate(args, T, total_time, model,
                                                  test_env, eval_csv_writer,
                                                  eval_csv_file)

            if args.plot:
                writer.add_scalar('eval/rewards_mean',
                                  eval_rewards.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('eval/lengths_mean',
                                  eval_lengths.mean().item(),
                                  T,
                                  walltime=total_time)

        start_time = time.time()

        with torch.no_grad():

            for step in range(args.num_steps_per_update):
                nvtx.range_push('train:step')
                value, logit = model(states[step0 + step])

                # store values and logits
                values[step0 + step] = value.squeeze(-1)

                # convert actions to numpy and perform next step
                probs = torch.clamp(F.softmax(logit, dim=1),
                                    min=0.00001,
                                    max=0.99999)
                probs_action = probs.multinomial(1).to(env_device)
                # Check if the multinomial threw an exception
                # https://github.com/pytorch/pytorch/issues/7014
                torch.cuda.current_stream().synchronize()
                observation, reward, done, info = train_env.step(
                    maybe_npy(probs_action))

                if args.use_openai:
                    # convert back to pytorch tensors
                    observation = torch.from_numpy(observation)
                    reward = torch.from_numpy(reward)
                    done = torch.from_numpy(done.astype(np.uint8))
                else:
                    observation = observation.squeeze(-1).unsqueeze(1)

                # move back to training memory
                observation = observation.to(device=train_device)
                reward = reward.to(device=train_device, dtype=torch.float32)
                done = done.to(device=train_device)
                probs_action = probs_action.to(device=train_device,
                                               dtype=torch.long)

                not_done = 1.0 - done.float()

                # update rewards and actions
                actions[step0 + step].copy_(probs_action.view(-1))
                masks[step0 + step].copy_(not_done)
                rewards[step0 + step].copy_(reward.sign())

                #mus[step0 + step] = F.softmax(logit, dim=1).gather(1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1)
                mus[step0 + step] = torch.clamp(F.softmax(logit, dim=1).gather(
                    1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1),
                                                min=0.00001,
                                                max=0.99999)

                # update next observations
                states[step0 + step + 1, :, :-1].copy_(states[step0 + step, :,
                                                              1:])
                states[step0 + step + 1] *= not_done.view(
                    -1, *[1] * (observation.dim() - 1))
                states[step0 + step + 1, :,
                       -1].copy_(observation.view(-1,
                                                  *states.size()[-2:]))

                # update episodic reward counters
                episode_rewards += reward
                final_rewards[done] = episode_rewards[done]
                episode_rewards *= not_done

                episode_lengths += not_done
                final_lengths[done] = episode_lengths[done]
                episode_lengths *= not_done
                nvtx.range_pop()

        n_minibatch = (n_minibatch + 1) % args.num_minibatches
        min_ale_index = int(n_minibatch * minibatch_size)
        max_ale_index = min_ale_index + minibatch_size

        # compute v-trace using the recursive method (remark 1 in IMPALA paper)
        # value_next_step, logit = model(states[-1:, min_ale_index:max_ale_index, :, : ,:].contiguous().view(-1, *states.size()[-3:]))
        # returns[-1, min_ale_index:max_ale_index] = value_next_step.squeeze()
        # for step in reversed(range(args.num_steps)):
        #     value, logit = model(states[step, min_ale_index:max_ale_index, :, : ,:].contiguous().view(-1, *states.size()[-3:]))
        #     pis = F.softmax(logit, dim=1).gather(1, actions[step, min_ale_index:max_ale_index].view(-1).unsqueeze(-1)).view(-1)
        #     c = torch.clamp(pis / mus[step, min_ale_index:max_ale_index], max=c_)
        #     rhos[step, :] = torch.clamp(pis / mus[step, min_ale_index:max_ale_index], max=rho_)
        #     delta_value = rhos[step, :] * (rewards[step, min_ale_index:max_ale_index] + (args.gamma * value_next_step - value).squeeze())
        #     returns[step, min_ale_index:max_ale_index] = value.squeeze() + delta_value + args.gamma * c * \
        #             (returns[step + 1, min_ale_index:max_ale_index] - value_next_step.squeeze())
        #     value_next_step = value

        nvtx.range_push('train:compute_values')
        value, logit = model(
            states[:, min_ale_index:max_ale_index, :, :, :].contiguous().view(
                -1,
                *states.size()[-3:]))
        batch_value = value.detach().view((args.num_steps + 1, minibatch_size))
        batch_probs = F.softmax(logit.detach()[:(args.num_steps *
                                                 minibatch_size), :],
                                dim=1)
        batch_pis = batch_probs.gather(
            1, actions[:, min_ale_index:max_ale_index].contiguous().view(
                -1).unsqueeze(-1)).view((args.num_steps, minibatch_size))
        returns[-1, min_ale_index:max_ale_index] = batch_value[-1]

        with torch.no_grad():
            for step in reversed(range(args.num_steps)):
                c = torch.clamp(batch_pis[step, :] /
                                mus[step, min_ale_index:max_ale_index],
                                max=args.c_hat)
                rhos[step, :] = torch.clamp(
                    batch_pis[step, :] /
                    mus[step, min_ale_index:max_ale_index],
                    max=args.rho_hat)
                delta_value = rhos[step, :] * (
                    rewards[step, min_ale_index:max_ale_index] +
                    (args.gamma * batch_value[step + 1] -
                     batch_value[step]).squeeze())
                returns[step, min_ale_index:max_ale_index] = \
                        batch_value[step, :].squeeze() + delta_value + args.gamma * c * \
                        (returns[step + 1, min_ale_index:max_ale_index] - batch_value[step + 1, :].squeeze())

        value = value[:args.num_steps * minibatch_size, :]
        logit = logit[:args.num_steps * minibatch_size, :]

        log_probs = F.log_softmax(logit, dim=1)
        probs = F.softmax(logit, dim=1)

        action_log_probs = log_probs.gather(
            1, actions[:, min_ale_index:max_ale_index].contiguous().view(
                -1).unsqueeze(-1))
        dist_entropy = -(log_probs * probs).sum(-1).mean()

        advantages = returns[:-1, min_ale_index:max_ale_index].contiguous(
        ).view(-1).unsqueeze(-1) - value

        value_loss = advantages.pow(2).mean()
        policy_loss = -(action_log_probs * rhos.view(-1, 1).detach() * \
                (rewards[:, min_ale_index:max_ale_index].contiguous().view(-1, 1) + args.gamma * \
                returns[1:, min_ale_index:max_ale_index].contiguous().view(-1, 1) - value).detach()).mean()
        nvtx.range_pop()

        nvtx.range_push('train:backprop')
        loss = value_loss * args.value_loss_coef + policy_loss - dist_entropy * args.entropy_coef
        optimizer.zero_grad()
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                       args.max_grad_norm)
        optimizer.step()
        nvtx.range_pop()

        nvtx.range_push('train:next_states')
        for step in range(0, args.num_steps_per_update):
            states[:-1, :, :, :, :] = states[1:, :, :, :, :]
            rewards[:-1, :] = rewards[1:, :]
            actions[:-1, :] = actions[1:, :]
            masks[:-1, :] = masks[1:, :]
            mus[:-1, :] = mus[1:, :]
        nvtx.range_pop()

        torch.cuda.synchronize()

        if args.rank == 0:
            iter_time = time.time() - start_time
            total_time += iter_time

            if args.plot:
                writer.add_scalar('train/rewards_mean',
                                  final_rewards.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/lengths_mean',
                                  final_lengths.mean().item(),
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/value_loss',
                                  value_loss,
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/policy_loss',
                                  policy_loss,
                                  T,
                                  walltime=total_time)
                writer.add_scalar('train/entropy',
                                  dist_entropy,
                                  T,
                                  walltime=total_time)

            progress_data = callback(args, model, T, iter_time, final_rewards,
                                     final_lengths, value_loss, policy_loss,
                                     dist_entropy, train_csv_writer,
                                     train_csv_file)
            iterator.set_postfix_str(progress_data)

    if args.plot and (args.rank == 0):
        writer.close()

    if args.use_openai:
        train_env.close()
    if args.use_openai_test_env:
        test_env.close()
Пример #5
0
def worker(gpu, ngpus_per_node, args):
    env_device, train_device = args_initialize(gpu, ngpus_per_node, args)

    # benchmark?
    if args.benchmark:

        device_name = torch.cuda.get_device_name(args.gpu).lower().replace(' ', '_')
        backend_name = 'cule_cpu'
        if args.use_openai:
            backend_name = 'openai'
        if args.use_cuda_env:
            backend_name = 'cule_gpu'
        if args.use_cuda_env and args.multiprocessing_distributed:
            backend_name = 'cule_multiples_gpus'
        filename = 'rom_perf_' + device_name + '_' + backend_name + '_' + args.env_name + '_' + str(args.num_ales) + '.csv'
        csv_file = open(filename, 'w', newline='')
        csv_writer = csv.writer(csv_file, delimiter=',')
        csv_writer.writerow(['env_name', 'num_ales', 'step_time', 'step_rate', 'device', 'mode'])

        args.evaluation_interval = args.t_max # no eval while benchmarking!

        benchmark_steps = 100

    double_testing = True

    # openai and cule testing
    if double_testing == False:
         train_csv_file, train_csv_writer, eval_csv_file, eval_csv_writer, summary_writer = log_initialize(args, train_device)
         train_env, test_env, observation = env_initialize(args, env_device)
    else:
        use_openai_test_env = args.use_openai_test_env
        output_filename = args.output_filename
        if args.output_filename is None:
            args.output_filename = 'test.csv'
        args.use_openai_test_env = False
        args.output_filename = args.output_filename[:-4] + '_cule.csv'
        train_csv_file, train_csv_writer, eval_csv_file, eval_csv_writer, summary_writer = log_initialize(args, train_device)
        train_env, test_env, observation = env_initialize(args, env_device)
        args.use_openai_test_env = True
        args.output_filename = args.output_filename[:-4] + '_openai.csv'
        _, test_env_oai, _ = env_initialize(args, env_device)
        train_csv_file_oai, train_csv_writer_oai, eval_csv_file_oai, eval_csv_writer_oai, summary_writer_oai = log_initialize(args, train_device)
        args.use_openai_test_env = use_openai_test_env
        args.output_filename = output_filename

    model = ActorCritic(args.num_stack, train_env.action_space, normalize=args.normalize, name=args.env_name)
    model, optimizer = model_initialize(args, model, train_device)

    if (args.num_ales % args.num_minibatches) != 0:
        raise ValueError('Number of ales({}) size is not even divisible by the minibatch size({})'.format(
            args.num_ales, args.num_minibatches))

    if args.num_steps_per_update == -1:
        args.num_steps_per_update = args.num_steps

    minibatch_size = int(args.num_ales / args.num_minibatches)
    step0 = args.num_steps - args.num_steps_per_update
    n_minibatch = -1

    # This is the number of frames GENERATED between two updates
    num_frames_per_iter = args.num_ales * args.num_steps_per_update
    total_steps = math.ceil(args.t_max / (args.world_size * num_frames_per_iter))

    shape = (args.num_steps + 1, args.num_ales, args.num_stack, *train_env.observation_space.shape[-2:])
    states = torch.zeros(shape, device=train_device, dtype=torch.float32)
    states[step0, :, -1] = observation.to(device=train_device, dtype=torch.float32)

    shape = (args.num_steps + 1, args.num_ales)
    values = torch.zeros(shape, device=train_device, dtype=torch.float32)
    logits = torch.zeros((args.num_steps + 1, args.num_ales, train_env.action_space.n), device=train_device, dtype=torch.float32)
    returns = torch.zeros(shape, device=train_device, dtype=torch.float32)

    shape = (args.num_steps, args.num_ales)
    rewards = torch.zeros(shape, device=train_device, dtype=torch.float32)
    masks = torch.zeros(shape, device=train_device, dtype=torch.float32)
    actions = torch.zeros(shape, device=train_device, dtype=torch.long)

    mus = torch.ones(shape, device=train_device, dtype=torch.float32)
    # pis = torch.zeros(shape, device=train_device, dtype=torch.float32)
    rhos = torch.zeros((args.num_steps, minibatch_size), device=train_device, dtype=torch.float32)

    # These variables are used to compute average rewards for all processes.
    episode_rewards = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    final_rewards = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    episode_lengths = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)
    final_lengths = torch.zeros(args.num_ales, device=train_device, dtype=torch.float32)

    if args.use_gae:
        raise ValueError('GAE is not compatible with VTRACE')

    maybe_npy = lambda a: a.numpy() if args.use_openai else a

    torch.cuda.synchronize()

    iterator = range(total_steps)
    if args.rank == 0:
        iterator = tqdm(iterator)
        total_time = 0
        evaluation_offset = 0

    # benchmark - random
    if args.benchmark:
        # warmup (measure anyway for debug!)
        torch.cuda.current_stream().synchronize()
        benchmark_start_time = time.time()
        for step in range(0, 10):
            if args.use_openai:
                random_actions = np.random.randint(train_env.action_space.n, size=args.num_ales)
                observation, reward, done, info = train_env.step(random_actions)
            else:
                random_actions = train_env.sample_random_actions()
                observation, reward, done, info = train_env.step(maybe_npy(random_actions))
        torch.cuda.current_stream().synchronize()
        elapsed_time = time.time() - benchmark_start_time
        fps = 10 * args.num_ales / elapsed_time
        print('Warmup - random: ' + str(round(fps)) + 'FPS')

        # benchmark
        benchmark_start_time = time.time()
        for step in range(0, benchmark_steps):
            if args.use_openai:
                random_actions = np.random.randint(train_env.action_space.n, size=args.num_ales)
                observation, reward, done, info = train_env.step(random_actions)
            else: 
                random_actions = train_env.sample_random_actions()
                observation, reward, done, info = train_env.step(maybe_npy(random_actions))
        torch.cuda.current_stream().synchronize()
        elapsed_time = time.time() - benchmark_start_time
        fps = benchmark_steps * args.num_ales / elapsed_time

        csv_writer.writerow([args.env_name, args.num_ales, elapsed_time / benchmark_steps, fps, backend_name, 'random'])
        print('Benchmark - random: ' + str(round(fps)) + ' PFS') 

        benchmark_start_time = time.time()

    for update in iterator:

        if not args.benchmark:
            T = args.world_size * update * num_frames_per_iter
            if (args.rank == 0) and (T >= evaluation_offset):
                evaluation_offset += args.evaluation_interval

                if double_testing == False:
                    eval_lengths, eval_rewards = test(args, model, test_env)

                    lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                    rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                    length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                    reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                    print('[training time: {}] {}'.format(format_time(total_time), ' --- '.join([length_data, reward_data])))

                    if eval_csv_writer and eval_csv_file:
                        eval_csv_writer.writerow([T, total_time, rmean, rmedian, rmin, rmax, rstd, lmean, lmedian, lmin, lmax, lstd])
                        eval_csv_file.flush()

                    if args.plot:
                        summary_writer.add_scalar('eval/rewards_mean', rmean, T, walltime=total_time)
                        summary_writer.add_scalar('eval/lengths_mean', lmean, T, walltime=total_time)

                else:

                    args.use_openai_test_env = False
                    eval_lengths, eval_rewards = test(args, model, test_env)
                    lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                    rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                    length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                    reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                    print('[CuLE CPU] [training time: {}] {}'.format(format_time(total_time), ' --- '.join([length_data, reward_data])))

                    if eval_csv_writer and eval_csv_file:
                        eval_csv_writer.writerow([T, total_time, rmean, rmedian, rmin, rmax, rstd, lmean, lmedian, lmin, lmax, lstd])
                        eval_csv_file.flush()

                    if args.plot:
                        summary_writer.add_scalar('eval/rewards_mean', rmean, T, walltime=total_time)
                        summary_writer.add_scalar('eval/lengths_mean', lmean, T, walltime=total_time)

                    args.use_openai_test_env = True
                    eval_lengths, eval_rewards = test(args, model, test_env_oai)
                    lmean, lmedian, lmin, lmax, lstd = gen_data(eval_lengths)
                    rmean, rmedian, rmin, rmax, rstd = gen_data(eval_rewards)
                    length_data = '(length) min/max/mean/median: {lmin:4.1f}/{lmax:4.1f}/{lmean:4.1f}/{lmedian:4.1f}'.format(lmin=lmin, lmax=lmax, lmean=lmean, lmedian=lmedian)
                    reward_data = '(reward) min/max/mean/median: {rmin:4.1f}/{rmax:4.1f}/{rmean:4.1f}/{rmedian:4.1f}'.format(rmin=rmin, rmax=rmax, rmean=rmean, rmedian=rmedian)
                    print('[OpAI CPU] [training time: {}] {}'.format(format_time(total_time), ' --- '.join([length_data, reward_data])))

                    if eval_csv_writer_oai and eval_csv_file_oai:
                        eval_csv_writer_oai.writerow([T, total_time, rmean, rmedian, rmin, rmax, rstd, lmean, lmedian, lmin, lmax, lstd])
                        eval_csv_file_oai.flush()

                    if args.plot:
                        summary_writer_oai.add_scalar('eval/rewards_mean', rmean, T, walltime=total_time)
                        summary_writer_oai.add_scalar('eval/lengths_mean', lmean, T, walltime=total_time)

                    args.use_openai_test_env = use_openai_test_env

        start_time = time.time()

        with torch.no_grad():

            for step in range(args.num_steps_per_update):
                nvtx.range_push('train:step')

                # step
                value, logit = model(states[step0 + step])

                # store values and logits
                values[step0 + step] = value.squeeze(-1)

                # convert actions to numpy and perform next step
                probs = torch.clamp(F.softmax(logit, dim=1), min = 0.00001, max = 0.99999)
                probs_action = probs.multinomial(1).to(env_device)
                # Check if the multinomial threw an exception
                # https://github.com/pytorch/pytorch/issues/7014
                torch.cuda.current_stream().synchronize()
                observation, reward, done, info = train_env.step(maybe_npy(probs_action))

                if args.use_openai:
                    # convert back to pytorch tensors
                    observation = torch.from_numpy(observation)
                    reward = torch.from_numpy(reward)
                    done = torch.from_numpy(done.astype(np.uint8))
                else:
                    observation = observation.squeeze(-1).unsqueeze(1)

                # move back to training memory
                observation = observation.to(device=train_device)
                reward = reward.to(device=train_device, dtype=torch.float32)
                done = done.to(device=train_device, dtype=torch.bool)
                probs_action = probs_action.to(device=train_device, dtype=torch.long)

                not_done = 1.0 - done.float()

                # update rewards and actions
                actions[step0 + step].copy_(probs_action.view(-1))
                masks[step0 + step].copy_(not_done)
                rewards[step0 + step].copy_(reward.sign())

                #mus[step0 + step] = F.softmax(logit, dim=1).gather(1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1)
                mus[step0 + step] = torch.clamp(F.softmax(logit, dim=1).gather(1, actions[step0 + step].view(-1).unsqueeze(-1)).view(-1), min = 0.00001, max=0.99999)

                # update next observations
                states[step0 + step + 1, :, :-1].copy_(states[step0 + step, :, 1:])
                states[step0 + step + 1] *= not_done.view(-1, *[1] * (observation.dim() - 1))
                states[step0 + step + 1, :, -1].copy_(observation.view(-1, *states.size()[-2:]))

                # update episodic reward counters
                episode_rewards += reward
                final_rewards[done] = episode_rewards[done]
                episode_rewards *= not_done

                episode_lengths += not_done
                final_lengths[done] = episode_lengths[done]
                episode_lengths *= not_done
                nvtx.range_pop()

        # benchmark - inference
        if args.benchmark:
            if update < (benchmark_steps - 1):
                for step in range(0, args.num_steps_per_update):
                    states[:-1, :, :, :, :] = states[1:, :, :, : ,:]
                    rewards[:-1, :] = rewards[1:, :]
                    actions[:-1, :] = actions[1:, :]
                    masks[:-1, :] = masks[1:, :]
                    mus[:-1, :] = mus[1:, :]
                continue
            if update == (benchmark_steps - 1):
                torch.cuda.current_stream().synchronize()
                elapsed_time = time.time() - benchmark_start_time
                fps = benchmark_steps * args.num_ales * args.num_steps_per_update / elapsed_time

                csv_writer.writerow([args.env_name, args.num_ales, elapsed_time / benchmark_steps, fps, backend_name, 'inference'])
                print('Benchmark - inference: ' + str(round(fps)) + ' PFS')

        n_minibatch = (n_minibatch + 1) % args.num_minibatches
        min_ale_index = int(n_minibatch * minibatch_size)
        max_ale_index = min_ale_index + minibatch_size

        nvtx.range_push('train:compute_values')
        value, logit = model(states[:, min_ale_index:max_ale_index, :, :, :].contiguous().view(-1, *states.size()[-3:]))
        batch_value = value.detach().view((args.num_steps + 1, minibatch_size))
        batch_probs = F.softmax(logit.detach()[:(args.num_steps * minibatch_size), :], dim=1)
        batch_pis = batch_probs.gather(1, actions[:, min_ale_index:max_ale_index].contiguous().view(-1).unsqueeze(-1)).view((args.num_steps, minibatch_size))
        returns[-1, min_ale_index:max_ale_index] = batch_value[-1]

        with torch.no_grad():
            for step in reversed(range(args.num_steps)):
                c = torch.clamp(batch_pis[step, :] / mus[step, min_ale_index:max_ale_index], max=args.c_hat)
                rhos[step, :] = torch.clamp(batch_pis[step, :] / mus[step, min_ale_index:max_ale_index], max=args.rho_hat)
                delta_value = rhos[step, :] * (rewards[step, min_ale_index:max_ale_index] + (args.gamma * batch_value[step + 1] - batch_value[step]).squeeze())
                returns[step, min_ale_index:max_ale_index] = \
                        batch_value[step, :].squeeze() + delta_value + args.gamma * c * \
                        (returns[step + 1, min_ale_index:max_ale_index] - batch_value[step + 1, :].squeeze())

        value = value[:args.num_steps * minibatch_size, :]
        logit = logit[:args.num_steps * minibatch_size, :]

        log_probs = F.log_softmax(logit, dim=1)
        probs = F.softmax(logit, dim=1)

        action_log_probs = log_probs.gather(1, actions[:, min_ale_index:max_ale_index].contiguous().view(-1).unsqueeze(-1))
        dist_entropy = -(log_probs * probs).sum(-1).mean()

        advantages = returns[:-1, min_ale_index:max_ale_index].contiguous().view(-1).unsqueeze(-1) - value

        value_loss = advantages.pow(2).mean()
        policy_loss = -(action_log_probs * rhos.view(-1, 1).detach() * \
                (rewards[:, min_ale_index:max_ale_index].contiguous().view(-1, 1) + args.gamma * \
                returns[1:, min_ale_index:max_ale_index].contiguous().view(-1, 1) - value).detach()).mean()
        nvtx.range_pop()

        nvtx.range_push('train:backprop')
        loss = value_loss * args.value_loss_coef + policy_loss - dist_entropy * args.entropy_coef
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
        optimizer.step()
        nvtx.range_pop()

        nvtx.range_push('train:next_states')
        for step in range(0, args.num_steps_per_update):
            states[:-1] = states[1:].clone()
            rewards[:-1] = rewards[1:]
            actions[:-1] = actions[1:]
            masks[:-1] = masks[1:]
            mus[:-1] = mus[1:]
        nvtx.range_pop()

        torch.cuda.synchronize()

        if not args.benchmark:
            if args.rank == 0:
                iter_time = time.time() - start_time
                total_time += iter_time

                if args.plot:
                    summary_writer.add_scalar('train/rewards_mean', final_rewards.mean().item(), T, walltime=total_time)
                    summary_writer.add_scalar('train/lengths_mean', final_lengths.mean().item(), T, walltime=total_time)
                    summary_writer.add_scalar('train/value_loss', value_loss, T, walltime=total_time)
                    summary_writer.add_scalar('train/policy_loss', policy_loss, T, walltime=total_time)
                    summary_writer.add_scalar('train/entropy', dist_entropy, T, walltime=total_time)

                progress_data = callback(args, model, T, iter_time, final_rewards, final_lengths,
                                         value_loss, policy_loss, dist_entropy, train_csv_writer, train_csv_file)
                iterator.set_postfix_str(progress_data)

        # benchmark - training
        if args.benchmark:
            if update == benchmark_steps:
                benchmark_start_time = time.time()
            if update == 2 * benchmark_steps:
                elapsed_time = time.time() - benchmark_start_time
                fps = benchmark_steps * args.num_ales * args.num_steps_per_update / elapsed_time

                csv_writer.writerow([args.env_name, args.num_ales, elapsed_time / benchmark_steps, fps, backend_name, 'training'])
                print('Benchmark - training: ' + str(round(fps)) + ' PFS')

                csv_file.close()
                break

    if args.plot and (args.rank == 0):
        writer.close()

    if args.use_openai:
        train_env.close()
    if args.use_openai_test_env:
        test_env.close()