def uniform_reconstruction_error_cost(config, y_true, y_pred, **kwargs) -> EvaluationResult: reconstruction_errors = compute_reconstruction_error(y_true, y_pred) reconstruction_error_cost = np.sqrt( np.average(np.power(reconstruction_errors, 2))) reconstruction_error_z_scores = z_score(reconstruction_errors) reconstruction_error_z_score_cost = np.sqrt( np.average(np.power(reconstruction_error_z_scores, 2))) cost = reconstruction_error_cost * reconstruction_error_z_score_cost return EvaluationResult(cost=cost, config=config, info={ 'reconstruction_error_cost': reconstruction_error_cost, 'reconstruction_error_z_score_cost': reconstruction_error_z_score_cost, })
def uniform_reconstruction_error_vs_compression_cost( config, y_true, y_pred, model: Model, history: dict, **kwargs) -> EvaluationResult: compression = compute_model_compression(model) reconstruction_error = reconstruction_error_cost(config, y_true, y_pred, **kwargs).cost reconstruction_error_z_scores = z_score( compute_reconstruction_error(y_true, y_pred)) reconstruction_error_z_score_cost = np.sqrt( np.average(np.power(reconstruction_error_z_scores, 2))) cost = (reconstruction_error * reconstruction_error_z_score_cost) / compression return EvaluationResult(cost=cost, config=config, info={ 'reconstruction_error': reconstruction_error, 'reconstruction_error_z_score': reconstruction_error_z_score_cost, 'compression': compression, })
def run_callable(run_config: dict): experiment.print('Loading data') bearing_dataset = load_data(run_config['data_set']) train = bearing_dataset.train(column=config['data_column'], as_numpy=True) test = bearing_dataset.test(column=config['data_column'], as_numpy=True) test_labels = bearing_dataset.test(column=config['data_column'], add_label=True)['label'] threshold_percentile = config['threshold_percentile'] x_train, x_valid, y_train, y_valid = train_test_split( train, train, test_size=config['validation_split'], shuffle=True, ) model = KerasModel( create_model_function=create_deep_easing_feed_forward_autoencoder, evaluation_function=load_from_module( run_config['evaluation_function']), ) history = pd.DataFrame(columns=[ 'cost', 'auc', 'accuracy', 'precision', 'recall', 'f_score', 'matthews_cc' ]) for i in range(1, config['num_evaluations']): experiment.print( f'Evaluating configuration {i} of {config["num_evaluations"]}') current_config = dict(config_space.sample_configuration()) model.load_config(current_config) evaluation_result = model.evaluate(x_train, y_train, x_valid, y_valid, budget=config['budget']) train_reconstruction_error = compute_reconstruction_error( y_train, model.predict(x_train)) train_z_scores = z_score(train_reconstruction_error) anomaly_threshold = percentile(train_z_scores, threshold_percentile) test_prediction = model.predict(test) test_reconstruction_error = compute_reconstruction_error( test, test_prediction) test_z_scores = z_score( test_reconstruction_error, given_median=median(train_reconstruction_error), given_mad=mad(train_reconstruction_error)) if np.isnan(np.sum(test_reconstruction_error)): experiment.print( 'Got a NaN value in test reconstruction error, skip this evaluation.' ) continue anomaly_prediction = (np.array(test_z_scores) > anomaly_threshold).astype(int) metrics = compute_classification_metrics(test_labels.values, anomaly_prediction) roc = compute_roc(test_labels.values, test_reconstruction_error) history_record = { 'cost': evaluation_result.cost, 'auc': roc['auc'], 'accuracy': metrics['accuracy'], 'precision': metrics['precision'], 'recall': metrics['recall'], 'f_score': metrics['f_score'], 'matthews_cc': metrics['matthews_cc'], **{f'info_{k}': v for k, v in evaluation_result.info.items()}, **{f'config_{k}': v for k, v in current_config.items()} } history = history.append(history_record, ignore_index=True) experiment.log('history', history)
def log_keras_predictions(self, model: Union[Model, KerasModel], data_frames: Dict[str, DataFrame], labels: Dict[str, Series] = None, key: str = None, pre_processing: Callable = None, pre_processing_x: Callable = None, pre_processing_y: Callable = None, rolling_window_size: int = 200, log_samples: List[int] = [0, -1], has_multiple_features: bool = False, threshold_percentile: int = 99): self.print('Logging predictions') log_base_path = 'predictions' if key is None else f'predictions/{key}' pre_processing_x = pre_processing_x if pre_processing_x is not None else pre_processing pre_processing_y = pre_processing_y if pre_processing_y is not None else pre_processing train_reconstruction_error = None train_reconstruction_error_rolling = None train_z_scores = None train_z_scores_rolling = None if 'train' in data_frames: train_data_frame = data_frames['train'] train_samples_x = pre_processing_x( train_data_frame ) if pre_processing_x is not None else train_data_frame.to_numpy() train_samples_y = pre_processing_y( train_data_frame ) if pre_processing_y is not None else train_data_frame.to_numpy() train_reconstruction_error = compute_reconstruction_error( train_samples_y, model.predict(train_samples_x), has_multiple_features=has_multiple_features) train_reconstruction_error_median = median( train_reconstruction_error) train_reconstruction_error_mad = mad(train_reconstruction_error) train_z_scores = list( map( lambda x: z_score(x, train_reconstruction_error_median, train_reconstruction_error_mad), train_reconstruction_error)) train_reconstruction_error_rolling = np.convolve( train_reconstruction_error, np.ones(rolling_window_size) / rolling_window_size, mode='valid') train_reconstruction_error_rolling_median = median( train_reconstruction_error_rolling) train_reconstruction_error_rolling_mad = mad( train_reconstruction_error_rolling) train_z_scores_rolling = list( map( lambda x: z_score( x, train_reconstruction_error_rolling_median, train_reconstruction_error_rolling_mad), train_reconstruction_error_rolling)) for data_frame_key, data_frame in data_frames.items(): data_frame = data_frame.copy() data_frame_log_path = f'{log_base_path}/{data_frame_key}' try: samples_x = pre_processing_x( data_frame ) if pre_processing_x is not None else data_frame.to_numpy() samples_y = pre_processing_y( data_frame ) if pre_processing_y is not None else data_frame.to_numpy() reconstruction = model.predict(samples_x) reconstruction_error = compute_reconstruction_error( samples_y, reconstruction, has_multiple_features=has_multiple_features) if len(data_frame.index) != len(reconstruction_error): cut_rows = len(reconstruction_error) - len( data_frame.index) data_frame = data_frame.iloc[:cut_rows].copy() data_frame['reconstruction_error'] = reconstruction_error data_frame['reconstruction_error_rolling'] = data_frame[ 'reconstruction_error'].rolling( window=rolling_window_size).median().fillna( method='backfill') data_frame['z_score'] = list( map( lambda x: z_score(x, train_reconstruction_error_median, train_reconstruction_error_mad), reconstruction_error)) data_frame['z_score_rolling'] = list( map( lambda x: z_score( x, train_reconstruction_error_rolling_median, train_reconstruction_error_rolling_mad), data_frame['reconstruction_error_rolling'].values)) self.plot(f'{data_frame_log_path}/reconstruction_error', x=data_frame.index, y=reconstruction_error, label='reconstruction error', time_formatting=True, close=False) self.plot( f'{data_frame_log_path}/reconstruction_error_rolling', x=data_frame.index, y=data_frame['reconstruction_error_rolling'], label='rolling reconstruction error', time_formatting=True, create_figure=False) self.plot(f'{data_frame_log_path}/z_score', x=data_frame.index, y=data_frame['z_score'], label='z-score', time_formatting=True, close=False) self.plot(f'{data_frame_log_path}/z_score_rolling', x=data_frame.index, y=data_frame['z_score_rolling'], label='rolling z-score', time_formatting=True, create_figure=False) if labels is not None and data_frame_key in labels and len( set(labels[data_frame_key].values)) > 1: roc = compute_roc(labels[data_frame_key].values, reconstruction_error) roc_rolling = compute_roc( labels[data_frame_key].values, data_frame['reconstruction_error_rolling'].values) self.log(f'{data_frame_log_path}/roc/auc', roc['auc']) self.log(f'{data_frame_log_path}/roc/data', roc, to_pickle=True) self.plot_roc(f'{data_frame_log_path}/roc/fpr_tpr', roc['fpr'], roc['tpr']) self.log(f'{data_frame_log_path}/roc/auc_rolling', roc_rolling['auc']) self.log(f'{data_frame_log_path}/roc/data_rolling', roc_rolling, to_pickle=True) self.plot_roc(f'{data_frame_log_path}/roc/fpr_tpr_rolling', roc_rolling['fpr'], roc_rolling['tpr']) if train_reconstruction_error is not None: data_frame['health_score'] = compute_health_score( train_reconstruction_error, reconstruction_error) data_frame['health_score_rolling'] = data_frame[ 'health_score'].rolling( window=rolling_window_size).median().fillna( method='backfill') log_metrics = [ 'reconstruction_error', 'reconstruction_error_rolling', 'health_score', 'health_score_rolling' ] if labels is not None and data_frame_key in labels and len( set(labels[data_frame_key].values)) > 1: threshold = percentile(train_z_scores, threshold_percentile) rolling_threshold = percentile(train_z_scores_rolling, threshold_percentile) prediction = (data_frame['z_score'] > threshold).astype(int) prediction_rolling = (data_frame['z_score_rolling'] > rolling_threshold).astype(int) metrics = compute_classification_metrics( labels[data_frame_key].values, prediction) metrics_rolling = compute_classification_metrics( labels[data_frame_key].values, prediction_rolling) self.log( f'{data_frame_log_path}/classification/thresholds', { 'threshold_percentile': threshold_percentile, 'threshold': threshold, 'rolling_threshold': rolling_threshold }) self.log( f'{data_frame_log_path}/classification/metrics', metrics) self.log( f'{data_frame_log_path}/classification/metrics_rolling', metrics_rolling) log_metrics.append('z_score') log_metrics.append('z_score_rolling') self.plot( f'{data_frame_log_path}/health_score/health_score', x=data_frame.index, y=data_frame['health_score'], label='health score', ylim=[0, 1], time_formatting=True, close=False) self.plot( f'{data_frame_log_path}/health_score/health_score_rolling', x=data_frame.index, y=data_frame['health_score'].rolling( window=rolling_window_size).median().fillna( method='backfill'), label='rolling health score', ylim=[0, 1], time_formatting=True, create_figure=False) self.log(f'{data_frame_log_path}/metrics', data_frame[log_metrics]) else: self.log( f'{data_frame_log_path}/metrics', data_frame[[ 'reconstruction_error', 'reconstruction_error_rolling', 'z_score', 'z_score_rolling' ]]) for sample_index in log_samples: ylim = [0, 1] if all( 0.0 <= value <= 1.0 for value in samples_y[sample_index] + reconstruction[sample_index]) else None sample_log_path = f'{data_frame_log_path}/samples/sample_{sample_index}' self.plot(f'{sample_log_path}/input', y=samples_y[sample_index], ylim=ylim, label='input', close=False) self.plot(f'{sample_log_path}/reconstruction', y=reconstruction[sample_index], ylim=ylim, label='reconstruction', create_figure=False) self.log( f'{sample_log_path}/data', pd.DataFrame.from_dict({ 'input': samples_y[sample_index], 'reconstruction': reconstruction[sample_index] })) plot_model_layer_activations( model=model if isinstance(model, Model) else model.model, sample=samples_x[sample_index], out_path=self._out_path( f'{sample_log_path}/activations/', is_directory=True)) except ValueError: self.log(f'{data_frame_log_path}/error', traceback.format_exc())