Пример #1
0
def main(processes, rounds):
    simulation = abcEconomics.Simulation(name='logging_test_friendly_names',
                                         processes=processes)

    agents = simulation.build_agents(Agent,
                                     'friendly_agent',
                                     agent_parameters=[{
                                         'name': 'A'
                                     }, {
                                         'name': 'Davoud'
                                     }, {
                                         'name': "fred"
                                     }, {
                                         'name': "F12"
                                     }])

    for rnd in range(10):
        for r in range(10):
            simulation.advance_round((r, rnd))
            agents.go()
            agents.agg_log(variables=['i', 'r'], goods=['money'])
            agents.panel_log(variables=['i', 'r'], goods=['money'])
    simulation.finalize()

    compare('aggregated_friendly_agent.csv', simulation.path,
            'aggregated logging test\t\t', processes)
    compare('aggregate_friendly_agent.csv', simulation.path,
            'aggregate logging test\t\t', processes)
    compare('panel_friendly_agent.csv', simulation.path,
            'aggregate logging test mean\t', processes)
Пример #2
0
def main(processes, rounds):
    simulation = abcEconomics.Simulation(processes=processes)

    print('build Killer')
    killer = simulation.build_agents(Killer, 'killer', 1)
    print('build Victim')
    victims = simulation.build_agents(Victim, 'victim', rounds)
    print('build Victim loudvictim')
    loudvictims = simulation.build_agents(Victim, 'loudvictim', rounds)
    print('build AddAgent')
    balls = simulation.build_agents(Ball, 'ball', 0)

    for time in range(rounds):
        simulation.advance_round(time)
        assert len(balls) == time, len(balls)
        deads = killer.kill_silent()
        victims.delete_agents(deads)
        deads = killer.kill_loud()
        loudvictims.delete_agents(deads)
        victims.am_I_dead()
        loudvictims.am_I_dead()
        balls.create_agents(Ball, 1)

    simulation.finalize()
    del simulation
Пример #3
0
def main(processes, rounds):
    sim = abcEconomics.Simulation()

    myagent = sim.build_agents(MyAgent, 'myagent',
                               agent_parameters=[{'agent_parameters': 0},
                                                 {'agent_parameters': 1},
                                                 {'agent_parameters': 2},
                                                 {'agent_parameters': 3},
                                                 {'agent_parameters': 4},
                                                 {'agent_parameters': 5},
                                                 {'agent_parameters': 6}])

    differentagent = sim.build_agents(DifferentAgent, 'differentagent',
                                      agent_parameters=[{'agent_parameters': 0},
                                                        {'agent_parameters': 1},
                                                        {'agent_parameters': 2},
                                                        {'agent_parameters': 3},
                                                        {'agent_parameters': 4},
                                                        {'agent_parameters': 5},
                                                        {'agent_parameters': 6}])

    print('len', len(myagent))

    sim.advance_round(0)
    myagent.call_me_maybe()
    print('simple')

    for r in range(1, 14):
        sim.advance_round(r)
        myagent[r % 7].call_me_maybe()
        print('--')

    print('two individuals')
    for r in range(14, 28):
        sim.advance_round(r)
        (myagent[r % 7] + myagent[3]).call_me_maybe()
        print('--')

    print('one class')
    for r in range(28, 42):
        sim.advance_round(r)
        myagent[r % 7, 3].call_me_maybe()
        print('--')

    print('whole class plus individual')
    for r in range(42, 56):
        sim.advance_round(r)
        (myagent + myagent[r % 7]).call_me_maybe()
        print('--')

    print('two classes')
    for r in range(56, 70):
        sim.advance_round(r)
        (myagent + differentagent).call_me_maybe()
        print('--')

    sim.finalize()
Пример #4
0
def main(processes, rounds):
    sim = abcEconomics.Simulation()
    sim.advance_round(0)

    myagents = sim.build_agents(MyAgent, 'myagent', number=5)

    for id in range(5):
        assert list(myagents[id].say()) == [id], (list(myagents[id].say()),
                                                  [id])
    sim.finalize()
Пример #5
0
def main(processes, rounds):
    s = abcEconomics.Simulation(processes=processes, name='unittest')

    endowment = s.build_agents(Endowment, 'endowment', 2, rounds=rounds)

    for r in range(rounds):
        s.time = r
        endowment.refresh_services('labor', derived_from='labor_endowment', units=5)
        endowment.Iconsume()
    endowment.all_tests_completed()
    s.finalize()
Пример #6
0
def main(processes, rounds):
    sim = abcEconomics.Simulation(processes=processes)

    myagents = sim.build_agents(MyAgent, 'myagent', number=2)

    for time in range(rounds):
        sim.time = time
        myagents.produce()

    myagents.all_tests_completed()
    sim.finalize()
Пример #7
0
def main(processes, rounds):
    sim = abcEconomics.Simulation(processes=processes)

    returners = sim.build_agents(Returner, 'returner', number=3)
    getters = sim.build_agents(Getter, 'getter', number=1)

    for y in range(rounds):
        sim.advance_round(y)
        ret = returners.returnit()
        getters.getit(ret)
        getters.method('a', 'b', 'c', d='d', f='f', e='e')
    sim.finalize()
    print('Returning tested \t\t\t\t\t\tOK')
    print('Calling with parameters tested \t\t\t\t\tOK')
Пример #8
0
def main(processes, rounds):
    sim = abcEconomics.Simulation(
        name='mysim',
        processes=processes,
        dbplugin=CustomLogging,
        dbpluginargs=['sqlite:///:memory:', 'sometable'])

    myagents = sim.build_agents(MyAgent, 'myagent', number=5)

    for i in range(rounds):
        sim.advance_round(i)
        myagents.write()

    sim.finalize()
Пример #9
0
def main(processes, rounds):
    s = abcEconomics.Simulation(processes=processes, name='unittest')

    print('build MessageA')
    messagea = s.build_agents(MessageA, 'messagea', 20)
    print('build MessageB')
    messageb = s.build_agents(MessageB, 'messageb', 20)

    for r in range(rounds):
        s.time = r
        (messagea + messageb).sendmsg()
        (messageb + messagea).recvmsg()

    print("Send_envelope and receive test:\t OK")
    s.finalize()
Пример #10
0
def main(processes, rounds):
    sim = abcEconomics.Simulation()
    sim.advance_round(0)

    myagents = sim.build_agents(MyAgent, 'myagent', agent_parameters=[{'name': 'me'},
                                                                      {'name': 'you'},
                                                                      {'name': 'him'},
                                                                      {'name': ('firm', 0)}])

    names = ['me', 'you', 'him', ('firm', 0)]
    for name in names:
        assert list(myagents.by_name(name).say()) == [name], (
            list(myagents.by_name(name).say()), [name])

    assert list(myagents.by_name(name).say()) == [name], (
        list(myagents.by_names(names).say()), names)
    sim.finalize()
Пример #11
0
def main(processes, rounds):
    simulation = abcEconomics.Simulation(name='logging_test',
                                         processes=processes)

    agents = simulation.build_agents(Agent, 'agent', 10)

    for rnd in range(100):
        simulation.advance_round(rnd)
        agents.go()
        agents.agg_log(variables=['i', 'r'], goods=['money'])
        agents.panel_log(variables=['i', 'r'], goods=['money'])
    simulation.finalize()

    compare('aggregated_agent.csv', simulation.path,
            'aggregated logging test\t\t', processes)
    compare('aggregate_agent.csv', simulation.path,
            'aggregate logging test\t\t', processes)
    compare('panel_agent.csv', simulation.path,
            'aggregate logging test mean\t', processes)
Пример #12
0
def main(processes, rounds):
    sim = abcEconomics.Simulation(processes=processes)

    aagents = sim.build_agents(Agent, 'aagent', number=5)
    bagents = sim.build_agents(Agent, 'bagent', number=5)

    actionA = aagents.actionA
    actionB = bagents.actionB

    for r in range(rounds):
        sim.advance_round(r)
        (aagents.actionA + aagents.actionB)()
        (aagents.actionA + bagents.actionB)()
        (aagents.actionB + bagents.actionB)()
        aagents.actionA()
        bagents.actionB()
        (actionA + actionB)()

    sim.finalize()
def main(processes, rounds=5):
    s = abcEconomics.Simulation(processes=processes,
                                name='production_consumption_test')
    print('build ProductionMultifirm')
    productionmultifirm = s.build_agents(ProductionMultifirm,
                                         'productionmultifirm',
                                         1,
                                         rounds=rounds)
    print('build UtilityHousehold')
    utilityhousehold = s.build_agents(UtilityHousehold,
                                      'utilityhousehold',
                                      5,
                                      rounds=rounds)

    all_agents = utilityhousehold + productionmultifirm

    for r in range(rounds):
        s.advance_round(r)
        productionmultifirm.production()
        utilityhousehold.consumption()
        all_agents.all_tests_completed()
    s.finalize()
Пример #14
0
import abcEconomics as abce
from ball import Ball
from killer import Killer
from victim import Victim

rounds = num_victims = 30

simulation = abce.Simulation(processes=1)

print('build Killer')
killer = simulation.build_agents(Killer, 'killer', 1)
print('build Victim')
victims = simulation.build_agents(Victim, 'victim', num_victims)
print('build Victim loudvictim')
loudvictims = simulation.build_agents(Victim, 'loudvictim', num_victims)
print('build AddAgent')
balls = simulation.build_agents(Ball, 'ball', 0)

for time in range(rounds):
    simulation.advance_round(time)
    deads = killer.kill_silent()
    victims.delete_agents(deads)
    deads = killer.kill_loud()
    loudvictims.delete_agents(deads)
    victims.am_I_dead()
    loudvictims.am_I_dead()

    balls.create_agents(Ball, 1)

simulation.finalize()
Пример #15
0
def main(simulation_parameters):

    test_sim = abce.Simulation(name='quipu_sim', processes=1)

    num_agents = 5

    names = list(range(0, num_agents))

    money = random.sample(range(1000, 5000), num_agents) 
    good2 = random.sample(range(100, 500), num_agents) 
    good3 = random.sample(range(100, 500), num_agents) 

    params = agent.build_agent_parameters(num_agents,names,'money',
                               money,'food', good2, 'other', good3)

    print(params)
    agents = test_sim.build_agents(Agent, 'agent', agent_parameters=params)

    num_edges = 2*num_agents

    G = graph.build_graph(num_agents,names,money)

    node_sizes = money

    r = 0
    while r < 10:

        test_sim.advance_round(r)
        r += 1

        #Select 2 random agents
        buyer = random.randint(0,num_agents-1)
        seller = random.randint(0,num_agents-1)

        #Transact
        action = random.randint(0,1)
        good = random.randint(0,10)

        agents[buyer].buy_goods(seller,good)
        
        cost = agents[seller].sell_goods(good)[0]

        node_size_1 = (agents[buyer].return_curr_money()[0][0])

        node_size_2 = (agents[seller].return_curr_money()[0][0])

        #Buyer gets smaller, seller gets bigger
        node_sizes[buyer] = node_size_1/2
        node_sizes[seller] = node_size_2*2

        plt.clf()

        #Add edge between them
        G.add_edge(buyer,seller)

  
        print(G.nodes())

        #Print
        nx.draw_networkx(G, pos=nx.get_node_attributes(G,'Position'), node_size=(node_sizes))

        pylab.draw()

        plt.pause(1)

    test_sim.finalize()
Пример #16
0
def main(simulation_parameters):

    test_sim = abce.Simulation(name='tony_test',
                               processes=1,
                               trade_logging='individual')

    total_cost = 0

    num_agents = 2

    names = list(range(0, num_agents))
    money = random.sample(range(1, 50), num_agents)
    good2 = random.sample(range(1, 50), num_agents)
    good3 = random.sample(range(1, 50), num_agents)

    #print(names.get_first_name())

    params = agent.build_agent_parameters(num_agents, names, 'money', money,
                                          'food', good2, 'other', good3)

    #agents = test_sim.build_agents(Agent, 'agent', agent_parameters=params)

    agents = test_sim.build_agents(Agent,
                                   'agent',
                                   agent_parameters=[{
                                       'family_name': 'buyer',
                                       'money': 100000,
                                       'food': 0
                                   }, {
                                       'family_name': 'seller',
                                       'money': 0,
                                       'food': 100000
                                   }])

    agents[0].print_possessions()

    buyer = agents[0].get_name()[0][0]
    seller = agents[1].get_name()[0][0]

    #Graph inital sizes, names
    node_sizes = [
        agents[0].return_quantity_of_good()[0][0],
        agents[1].return_quantity_of_good()[0][0]
    ]

    G = nx.DiGraph()
    G.add_node(buyer,
               Position=(random.randrange(0, 100), random.randrange(0, 100)))
    G.add_node(seller,
               Position=(random.randrange(0, 50), random.randrange(0, 50)))

    G.add_edge(buyer, seller, weight=total_cost)

    end = False
    r = 0

    #Run simulation
    while (r < 10):

        test_sim.advance_round(r)
        r += 1

        agents[0].buy_goods(1, 0)

        cost = agents[1].sell_goods(0)[0]

        #Ugly but ends the loop when the transactions are no longer possible
        if cost[0] == -1:
            end = True

        total_cost += cost[0]

        #Update node size to reflect good quantity
        node_size_1 = int((agents[0].return_quantity_of_good()[0][0]) * 0.1)
        node_size_2 = int((agents[1].return_quantity_of_good()[0][0]) * 0.1)

        node_sizes = [node_size_1, node_size_2]
        print(node_sizes)
        #Update weight size to reflect money transferred
        G.add_edge(buyer, seller, weight=(total_cost * 100))

        #label the edges
        labels = {(buyer, seller): total_cost}
        plt.clf()
        #plot the graphs
        plt.title("100,000 products sold by seller")
        nx.draw_networkx(G,
                         pos=nx.get_node_attributes(G, 'Position'),
                         node_list=[buyer, seller],
                         node_size=node_sizes,
                         with_labels=True)

        nx.draw_networkx_edge_labels(G,
                                     pos=nx.get_node_attributes(G, 'Position'),
                                     edge_labels=labels,
                                     font_size=30)

        pylab.draw()

        plt.pause(.5)

    test_sim.finalize()
Пример #17
0
def main():

    # Read in simulation parameters
    f = open('sim_params_final.csv', 'r')
    data = np.array(list(csv.reader(f)))

    curr_sim = data[1, :]

    num_agents = int(curr_sim[1])
    chance_food_inside = float(curr_sim[2])
    chance_raw_inside = float(curr_sim[3])
    quipu = int(curr_sim[5])
    print(quipu)

    f.close()

    test_sim = abce.Simulation(name='quipu_sim',
                               processes=1,
                               trade_logging='off')

    walmart_size = 1000
    names = list(range(0, num_agents + 1))

    money = random.sample(range(5, 100), num_agents)
    money.append(walmart_size)

    food = random.sample(range(10, 50), num_agents)
    quipus = random.sample(range(5, 45), num_agents)
    other = random.sample(range(1, 20), num_agents)

    params = agent.build_agent_parameters(num_agents, names, 'money', money,
                                          'food', food, 'quipu', quipus,
                                          'other', other)

    agents = test_sim.build_agents(Quipu_Agent,
                                   'agent',
                                   agent_parameters=params)
    walmart = test_sim.build_agents(Walmart,
                                    'corporate',
                                    agent_parameters=[{
                                        'family_name': 'walmart',
                                        'money': 100,
                                        'food': 100,
                                        'other': 100
                                    }])

    if quipu == 1:
        ofile = open('data_with_quipus.csv', 'w')
        print("here")
    else:
        ofile = open('data_just_money.csv', 'w')
        print("here1")

    writer = csv.writer(ofile, delimiter=',')
    writer.writerow([
        'Transaction ID', 'Buyer ID', 'Seller ID', 'Type of transaction',
        'Currency', 'Failure from Buyer', 'Failure from Seller'
    ])

    r = 0
    num_rounds = 40
    transaction_id = 0

    while (r < num_rounds):

        test_sim.advance_round(r)
        r += 1

        #Each round, select an agent and a random interaction (walmart or not)
        #Each round, every agent eats some food
        for x in range(num_agents):

            action = random.randint(0, 100)
            agents[x].eat_food()

            if action > (chance_food_inside * 100):
                buy = agents[x].buy_goods_from_walmart(0, 1)[0][0]

                sell = walmart[0].walmart_sell_goods(1)[0][0]

                writer.writerow(
                    [transaction_id, x, -1, 'food', 'money', buy, sell])

            else:
                #Buy from an agent that is not yourself
                numbers = list(range(0, x)) + list(range(x + 1, num_agents))
                curr = random.choice(numbers)
                buy = agents[x].buy_goods(curr, 0, quipu)[0][0]
                sell = agents[curr].sell_goods(0, quipu)[0][0]

                if quipu == 1:
                    writer.writerow(
                        [transaction_id, x, curr, 'food', 'quipu', buy, sell])
                else:
                    writer.writerow(
                        [transaction_id, x, curr, 'food', 'money', buy, sell])

            # Buy raw materials 1x per week
            if r % 7 == 0:
                transaction_id += 1
                action = random.randint(0, 100)

                if action > (chance_raw_inside * 100):
                    buy = agents[x].buy_goods_from_walmart(0, 0)[0][0]
                    sell = walmart[0].walmart_sell_goods(0)[0][0]

                    writer.writerow(
                        [transaction_id, x, -1, 'raw', 'money', buy, sell])

                else:
                    #Buy from an agent that is not yourself
                    numbers = list(range(0, x)) + list(range(
                        x + 1, num_agents))
                    curr = random.choice(numbers)
                    buy = agents[x].buy_goods(curr, 1, quipu)[0][0]
                    sell = agents[curr].sell_goods(1, quipu)[0][0]

                    if quipu == 1:
                        writer.writerow([
                            transaction_id, x, curr, 'food', 'quipu', buy, sell
                        ])
                    else:
                        writer.writerow([
                            transaction_id, x, curr, 'food', 'money', buy, sell
                        ])

            transaction_id += 1

    #end of loop
    ofile.close()
    test_sim.finalize()
Пример #18
0
def main():

    chance_raw_outside = 0.88
    chance_raw_inside = 1 - chance_raw_outside
    chance_food_inside = 0.83
    chance_food_outside = 1 - chance_food_inside

    test_sim = abce.Simulation(name='quipu_sim',
                               processes=1,
                               trade_logging='off')

    num_agents = 5
    walmart_size = 1000
    names = list(range(0, num_agents + 1))

    money = random.sample(range(100, 200), num_agents)
    money.append(walmart_size)

    food = random.sample(range(10, 50), num_agents)
    quipu = random.sample(range(10, 50), num_agents)

    params = agent.build_agent_parameters(num_agents, names, 'money', money,
                                          'food', food, 'quipu', quipu)

    agents = test_sim.build_agents(Quipu_Agent,
                                   'agent',
                                   agent_parameters=params)
    walmart = test_sim.build_agents(Walmart,
                                    'corporate',
                                    agent_parameters=[{
                                        'family_name': 'walmart',
                                        'money': 100,
                                        'food': 100
                                    }])

    color_map = ['red'] * (num_agents + 1)
    color_map[num_agents] = 'blue'

    G = graph.build_graph(num_agents + 1, names, money, 1, num_agents)

    edges = G.edges()

    nx.draw_networkx(G,
                     pos=nx.get_node_attributes(G, 'Position'),
                     node_size=money,
                     node_color=color_map,
                     width=3,
                     with_labels=True)
    plt.pause(1)

    money_over_time = []
    food_over_time = []
    quipus_over_time = []

    r = 0
    num_rounds = 10

    while (r < num_rounds):

        test_sim.advance_round(r)
        r += 1

        curr_money = 0
        curr_quipus = 0
        curr_food = 0
        #Each round, select an agent and a random interaction (walmart or not)
        #Each round, every agent eats some food
        for x in range(num_agents):
            curr_money += agents[x].return_money()[0][0]
            curr_food += agents[x].return_food()[0][0]
            curr_quipus += agents[x].return_quipu()[0][0]

            colors = []

            action = random.randint(0, 1)
            agents[x].eat_food()

            if action == 0:
                agents[x].buy_goods(0)
                walmart[0].sell_goods()

                for u, v in edges:
                    if (u == x and v == num_agents) or (u == num_agents
                                                        and v == x):
                        colors.append('g')
                    else:
                        colors.append('#000000')

            else:
                numbers = list(range(0, x)) + list(range(x + 1, num_agents))
                curr = random.choice(numbers)
                agents[x].buy_goods_with_quipu(curr)
                agents[curr].sell_goods_with_quipu()

                for u, v in edges:
                    if (u == x and v == curr) or (u == curr and v == x):
                        colors.append('g')
                    else:
                        colors.append('#000000')

            nx.draw_networkx(G,
                             pos=nx.get_node_attributes(G, 'Position'),
                             node_size=money,
                             node_color=color_map,
                             edge_color=colors,
                             with_labels=True,
                             width=3)

            plt.pause(0.2)

        money_over_time.append(curr_money)
        food_over_time.append(curr_food)
        quipus_over_time.append(curr_quipus)

    plt.close()
    #end of loop
    test_sim.finalize()
    test_sim.graphs()
    r_list = list(range(0, num_rounds))

    # f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharex=True, figsize=(15,5))
    # ax1.plot(r_list,money_over_time,'r',label='money over time')
    # ax2.plot(r_list,food_over_time,'b',label='food over time')
    # ax3.plot(r_list,quipus_over_time,'g',label='quipus over time')
    # ax1.legend(loc='best')
    # ax2.legend(loc='best')
    # ax3.legend(loc='best')
    # plt.show()
    # plt.pause(5)
    # plt.close('all')
    sys.exit()