def test_trivial(self): G = y - x S = newton_iteration(G, 3) self.assertEqual(S, x) G = y - x**2 S = newton_iteration(G, 3) self.assertEqual(S, x**2)
def test_trivial(self): G = y - x S = newton_iteration(G,3) self.assertEqual(S,x) G = y - x**2 S = newton_iteration(G,3) self.assertEqual(S,x**2)
def test_n(self): # test if the solution is indeed given to the desired terms G = y - x**2 S = newton_iteration(G, 0) self.assertEqual(S, 0) G = y - x**2 S = newton_iteration(G, 3) self.assertEqual(S, x**2)
def test_n(self): # test if the solution is indeed given to the desired terms G = y - x**2 S = newton_iteration(G,0) self.assertEqual(S,0) G = y - x**2 S = newton_iteration(G,3) self.assertEqual(S,x**2)
def test_geometric(self): G = (1 - x) * y - 1 S = newton_iteration(G, 9).truncate(x, 10) z = var('z') series = taylor(1 / (1 - z), z, 0, 9) series = R(series.subs({z: x})) self.assertEqual(S, series)
def test_geometric(self): G = (1-x)*y - 1 S = newton_iteration(G,9).truncate(x,10) z = var('z') series = taylor(1/(1-z),z,0,9) series = R(series.subs({z:x})) self.assertEqual(S,series)
def test_cuberoot(self): # recenter cuberoot(x) at x+1 G = (y + 1)**3 - (x + 1) S = newton_iteration(G, 9).truncate(x, 10) + 1 z = var('z') series = taylor(z**(QQ(1) / QQ(3)), z, 1, 9) series = R(series.subs({z: x + 1})) self.assertEqual(S, series)
def test_sqrt(self): # recenter sqrt(x) at x+1 G = (y + 1)**2 - (x + 1) S = newton_iteration(G, 9).truncate(x, 10) + 1 z = var('z') series = taylor(sqrt(z), z, 1, 9) series = R(series.subs({z: x + 1})) self.assertEqual(S, series)
def test_cuberoot(self): # recenter cuberoot(x) at x+1 G = (y+1)**3 - (x+1) S = newton_iteration(G,9).truncate(x,10) + 1 z = var('z') series = taylor(z**(QQ(1)/QQ(3)),z,1,9) series = R(series.subs({z:x+1})) self.assertEqual(S,series)
def test_sqrt(self): # recenter sqrt(x) at x+1 G = (y+1)**2 - (x+1) S = newton_iteration(G,9).truncate(x,10) + 1 z = var('z') series = taylor(sqrt(z),z,1,9) series = R(series.subs({z:x+1})) self.assertEqual(S,series)