Пример #1
0
 def run(self,x0,x1,autoInit=True,threshold=1e-3,**kwargs):
      if autoInit:               
           _,_,T = self.buildInitGuess(x0,x1)
           if 'horizon' not in self.options:
                if 'additionalOptions' not in kwargs: kwargs['additionalOptions'] = ''
                kwargs['additionalOptions'] +=  ' --horizon=%.4f' % T[-1]
      AcadoRunner.run(self,states=self.stateDict(x0,x1), **kwargs)
      # # Run may raise an error but always return True.
      return self.checkResult(True,x0,x1,threshold=threshold)
Пример #2
0
     def __init__(self,path="/home/nmansard/src/pinocchio/pycado/build/unittest/connect_pendulum",
                  model=None,data=None,datadir='/tmp/'):

          AcadoRunner.__init__(self,path)

          self.options['istate']   = datadir+'guess.stx'
          self.options['icontrol'] = datadir+'guess.ctl'
          self.options['ocontrol'] = datadir+'mpc.ctl'
          self.options['ostate']   = datadir+'mpc.stx'
          self.options['oparam']   = datadir+'mpc.prm'

          self.withRunningCost     = False     # The problem is Mayer cost.

          self.guess = InitGuessBuilder(model,data)
Пример #3
0
 def run_async(self,x0,x1,autoInit=True,jobid=None, **kwargs):
      # We have to pre-book to know where the init-guess should be stored.
      if jobid is None: jobid = self.book_async()
      if autoInit:
           _,_,T = self.buildInitGuess(x0,x1,jobid=jobid)
           if 'horizon' not in self.options:
                if 'additionalOptions' not in kwargs: kwargs['additionalOptions'] = ''
                kwargs['additionalOptions'] +=  ' --horizon=%.4f' % T[-1]
      return AcadoRunner.run_async(self,
                                   states = self.stateDict(x0,x1),
                                   jobid  = jobid, **kwargs)
Пример #4
0
 def join(self,jobid,x1=None,x2=None,threshold=1e-3,**kwargs):
      '''Join the solver process and check if the result satisfies the constraints'''
      ret = AcadoRunner.join(self,jobid,**kwargs)
      return self.checkResult(ret,x1,x2,jobid,threshold)
Пример #5
0
     def rerun(self): return AcadoRunner.run(self)   # DEPREC???

     # --- ASYNC --------------------------------------------------------------------------
     # --- ASYNC --------------------------------------------------------------------------
     # --- ASYNC --------------------------------------------------------------------------
     def run_async(self,x0,x1,autoInit=True,jobid=None, **kwargs):
Пример #6
0
 def initrun(self,x0,x1,iterations=100,autoInit = True,**kwargs):
      if autoInit:               self.buildInitGuess(x0,x1)
      AcadoRunner.initrun(self,
                          states=self.stateDict(x0,x1),
                          iterations=iterations)
      return self.checkResult(True,x0,x1)
Пример #7
0
        x, reward = env.step(u)
        env.render()
        time.sleep(1e-1)
        rsum += reward
    if verbose: print 'Lasted ', i, ' timestep -- total reward:', rsum


signal.signal(signal.SIGTSTP,
              lambda x, y: rendertrial())  # Roll-out when CTRL-Z is pressed

env.NDT = 1
env.modulo = False

from acado_runner import AcadoRunner

acado = AcadoRunner()
acado.options['horizon'] = NSTEPS * env.DT
acado.options['steps'] = NSTEPS
acado.options['shift'] = 0
acado.options['iter'] = 20
acado.options['friction'] = env.Kf
acado.options['decay'] = DECAY_RATE
acado.options['icontrol'] = '/tmp/guess.ctl'
del acado.options['istate']


def policyOptim(x0):
    '''
    Rollout the net to get a warmstart, then run Acado to optimize the warmstart
    Return the policy and the value at input state.
    '''
Пример #8
0
    mod = round(env.x[0, 0] / 2 / np.pi)
    dx = -mod * 2 * np.pi
    X[:, 0] += dx
    return X, U


x0 = np.matrix([2., .2]).T
#X,U=rollout(x0)

env.NDT = 10
x0 = np.matrix([0.30459664, -7.20891078]).T
NNODES = 16
FNODES = NSTEPS / NNODES

from acado_runner import AcadoRunner
acado = AcadoRunner(
    "/home/nmansard/src/pinocchio/pycado/build/unittest/pendulum2o")
acado.options['horizon'] = NSTEPS * env.DT
acado.options['steps'] = NNODES
acado.options['shift'] = 0
acado.options['iter'] = 10  # 100
acado.options['friction'] = env.Kf
#acado.options['decay']    = 0 # DECAY_RATE
#del acado.options['istate']


def policyOptim(x0=None):
    X, U = rollout(x0)

    guess = np.hstack([
        np.matrix(np.arange(0, (NSTEPS + 1) * env.DT, env.DT)).T, X, U,
        zero(NSTEPS + 1),