def test_value_dump_load():
    conf = configs.SparseServiceConfig()
    assert conf.downsampling_factor == 1
    conf.downsampling_factor = 2
    dump = conf._dumps()

    conf = configs.SparseServiceConfig()
    assert conf.downsampling_factor == 1
    conf._loads(dump)
    assert conf.downsampling_factor == 2

    conf = configs.EnvelopeServiceConfig()
    with pytest.raises(AssertionError):
        conf._loads(dump)
Пример #2
0
def get_sensor_config():
    config = configs.SparseServiceConfig()
    config.profile = configs.SparseServiceConfig.Profile.PROFILE_3
    config.range_interval = [0.48, 0.72]
    config.sweeps_per_frame = 16
    config.hw_accelerated_average_samples = 60
    config.update_rate = 60
    return config
def get_sensor_config():
    sensor_config = configs.SparseServiceConfig()
    sensor_config.range_interval = [0.24, 1.20]
    sensor_config.update_rate = 60
    sensor_config.sampling_mode = configs.SparseServiceConfig.SamplingMode.A
    sensor_config.profile = configs.SparseServiceConfig.Profile.PROFILE_3
    sensor_config.hw_accelerated_average_samples = 60
    return sensor_config
Пример #4
0
def test_value_get_set():
    conf = configs.SparseServiceConfig()

    assert conf.downsampling_factor == 1
    conf.downsampling_factor = 2
    assert conf.downsampling_factor == 2
    del conf.downsampling_factor
    assert conf.downsampling_factor == 1
def get_sensor_config():
    config = configs.SparseServiceConfig()
    config.profile = configs.SparseServiceConfig.Profile.PROFILE_3
    config.sampling_mode = configs.SparseServiceConfig.SamplingMode.B
    config.range_interval = [0.3, 1.3]
    config.update_rate = 80
    config.sweeps_per_frame = 32
    config.hw_accelerated_average_samples = 60
    return config
def get_sensor_config():
    config = configs.SparseServiceConfig()
    config.profile = configs.SparseServiceConfig.Profile.PROFILE_3
    config.sampling_mode = configs.SparseServiceConfig.SamplingMode.A
    config.range_interval = [0.24, 0.48]
    config.sweeps_per_frame = 64
    config.sweep_rate = 3e3
    config.hw_accelerated_average_samples = 60
    return config
def get_sensor_config():
    config = configs.SparseServiceConfig()
    config.profile = configs.SparseServiceConfig.Profile.PROFILE_4
    config.sampling_mode = configs.SparseServiceConfig.SamplingMode.A
    config.range_interval = [0.36, 0.54]
    config.downsampling_factor = 3
    config.sweeps_per_frame = 512
    config.hw_accelerated_average_samples = 60
    return config
def main():
    args = utils.ExampleArgumentParser().parse_args()
    utils.config_logging(args)

    if args.socket_addr:
        client = clients.SocketClient(args.socket_addr)
    elif args.spi:
        client = clients.SPIClient()
    else:
        port = args.serial_port or utils.autodetect_serial_port()
        client = clients.UARTClient(port)

    client.squeeze = False

    sensor_config = configs.SparseServiceConfig()
    sensor_config.sensor = args.sensors
    sensor_config.range_interval = [0.24, 1.20]
    sensor_config.sweeps_per_frame = 16
    sensor_config.hw_accelerated_average_samples = 60
    sensor_config.sampling_mode = sensor_config.SamplingMode.A
    sensor_config.profile = sensor_config.Profile.PROFILE_3
    sensor_config.gain = 0.6

    session_info = client.setup_session(sensor_config)

    pg_updater = PGUpdater(sensor_config, None, session_info)
    pg_process = PGProcess(pg_updater)
    pg_process.start()

    client.start_session()

    interrupt_handler = utils.ExampleInterruptHandler()
    print("Press Ctrl-C to end session")

    while not interrupt_handler.got_signal:
        data_info, data = client.get_next()

        try:
            pg_process.put_data(data)
        except PGProccessDiedException:
            break

    print("Disconnecting...")
    pg_process.close()
    client.disconnect()
Пример #9
0
 def __init__(self, demo_ctrl, params):
     super().__init__(demo_ctrl, self.detector_name)
     self.config = configs.SparseServiceConfig()
     self.config.sampling_mode = configs.SparseServiceConfig.SamplingMode.A
     self.update_config(params)
def main():
    args = utils.ExampleArgumentParser().parse_args()
    utils.config_logging(args)

    if args.socket_addr:
        client = clients.SocketClient(args.socket_addr)
    elif args.spi:
        client = clients.SPIClient()
    else:
        port = args.serial_port or utils.autodetect_serial_port()
        client = clients.UARTClient(port)

    client.squeeze = False

    range_start = 0.18
    range_end = 0.60
    num = int((range_end*100-range_start*100)/6)+1

    sensor_config = configs.SparseServiceConfig()
    sensor_config.sensor = args.sensors
    sensor_config.range_interval = [range_start, range_end]
    sensor_config.sweeps_per_frame = 16
    sensor_config.hw_accelerated_average_samples = 60
    sensor_config.sampling_mode = sensor_config.SamplingMode.A
    sensor_config.profile = sensor_config.Profile.PROFILE_2
    sensor_config.gain = 0.6

    session_info = client.setup_session(sensor_config)

    # pg_updater = PGUpdater(sensor_config, None, session_info)
    # pg_process = PGProcess(pg_updater)
    # pg_process.start()
    client.start_session()

    storage = []
    counter = 0
    sample = 300

    interrupt_handler = utils.ExampleInterruptHandler()
    print("Press Ctrl-C to end session")

    temp = np.zeros(num)
    
    #端末からデータを受け取り、フレームに入っているsweepの平均を取得し、tempに追加
    while not interrupt_handler.got_signal:
        data_info, data = client.get_next()
        counter += 1

        for sweep in data[0]:
            temp = temp + sweep

        temp = temp/len(data[0])
        storage.append(temp)
        temp = np.zeros(int(num))

        if(counter >= sample):
            break

    #300個のフレームから距離ごとに平均を取得
    # result = np.zeros(len(storage[0]))
    # for data in storage:
    #     result = result + data
    # result = result/len(storage)


    # clr=plt.rcParams['axes.prop_cycle'].by_key()['color']

    roop_count = 0
    prev_getData = np.loadtxt('sparse.csv')
    
    #生データ300個のフレームの平均を表示   
    show_raw_data = np.zeros(int(num))
    for frame in storage:
        show_raw_data += frame    
    show_curr_RawData = show_raw_data/sample
    
    ##保存していたデータの生データ300個のフレームの平均
    show_prev_RawData = []
    for data in prev_getData:
        show_prev_RawData.append(np.sum(data)/sample)

    x = np.arange(range_start*100,range_end*100+1,6)
    plt.subplot(1,3,1)
    plt.plot(x,show_curr_RawData,color='r')  
    plt.title("Raw Data(Current)") 
    plt.xlabel("Distance(cm)")
    plt.ylabel("Amptitude")
    plt.subplot(1,3,2)
    plt.plot(x,show_prev_RawData,color='b')  
    plt.title("Raw Data(Previous)") 
    plt.xlabel("Distance(cm)")
    plt.ylabel("Amptitude")
    plt.subplot(1,3,3)
    plt.title("Raw Data(Compare)") 
    plt.plot(x,show_curr_RawData,color='r')  
    plt.plot(x,show_prev_RawData,color='b')  
    plt.xlabel("Distance")
    plt.ylabel("Amptitude")
    
    # plt.tight_layout()
    # plt.show()
    # exit(1)
    

    #データを別々に表示
    for i in range(num):
        show_data = []
        plt.subplot(math.ceil(num/2),4,roop_count*2+1)
        plt.title(str(range_start*100+i*6)+"cm(Current)") 
        plt.xlabel("Quantity")
        plt.ylabel("Amptitude")
        for j in range(len(storage)):
            show_data.append(storage[j][i])
        plt.plot(range(1,sample+1),show_data,color='r')  

        plt.subplot(math.ceil(num/2),4,roop_count*2+2)
        plt.title(str(range_start*100+i*6)+"cm(Previous)") 
        plt.plot(range(1,sample+1),prev_getData[i],color='b')
        plt.xlabel("Quantity")
        plt.ylabel("Amptitude")
        roop_count += 1

    # plt.tight_layout()
    # plt.show()

    #データをあわせて表示
    for i in range(num):
        show_data = []
        plt.subplot(math.ceil(num/2),2,i+1)
        for j in range(len(storage)):
            show_data.append(storage[j][i])
        plt.plot(range(1,sample+1),show_data,color='r',label="Current Data")  
        plt.title(str(range_start*100+i*6)+"cm(Combination)") 
        plt.plot(range(1,sample+1),prev_getData[i],color='b',label="Previous Data")
        plt.xlabel("Quantity")
        plt.ylabel("Amptitude")
        plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0,fontsize='small')

    # plt.tight_layout()
    # plt.show()

    #ある距離の時系列データの遷移とそのデータのヒストグラムの表示   
    now_getData = []
    for i in range(num):
        show_data = []
        # plt.subplot(math.ceil(num/2),2,i+1)
        plt.subplot(math.ceil(num/2),4,i*2+1)
        plt.title(str(range_start*100+i*6)+"cm") 
        plt.xlabel("Distance") 
        plt.ylabel("Amptitude") 
        for j in range(len(storage)):
            show_data.append(storage[j][i])

        now_getData.append(show_data)
        # ヒストグラムの作成と表示
        # hist, bins = np.histogram(show_data,density=True)
        plt.plot(range(1,sample+1),show_data,color = "tomato")  
        plt.subplot(math.ceil(num/2),4,i*2+2)
        plt.hist(show_data,bins=10,density=True,color = "aqua")
        plt.title(str(range_start*100+i*6)+"cm") 
        plt.xlabel("Class") 
        plt.ylabel("Frequency") 
        # print("ヒストグラムの度数"+str(hist[0]))
        # print("階級を区切る値"+str(hist[1]))

    # plt.tight_layout()
    # plt.show()

    #ndarray型に変換し、保存
    # now_getData = np.array(now_getData)
    # np.savetxt('sparse.csv',now_getData)
    # exit(1)

    roop_count = 0
    prev_getData = np.loadtxt('sparse.csv')
    KL_storage = []
    JS_storage = []

    #ヒストグラムの度数からKLを算出
    for i in zip(prev_getData,now_getData):
        plt.subplot(math.ceil(num/2),4,roop_count*2+1)
        plt.title(str(range_start*100+roop_count*6)+"cm(Previous)") 
        plt.xlabel("Distance") 
        plt.ylabel("Frequency") 
        now_hist = plt.hist(i[0],bins=10,color = "lime")
        now_hist = normalization(np.array(now_hist[0]))

        # now_hist_normalization = normalization(np.array(now_hist[0]))
        # now_hist[0] = now_hist_normalization
        # print(now_hist)

        plt.subplot(math.ceil(num/2),4,roop_count*2+2)
        plt.title(str(range_start*100+roop_count*6)+"cm(Now)") 
        plt.xlabel("Distance") 
        plt.ylabel("Frequency") 
        prev_hist = plt.hist(i[1],bins=10,color = "deepskyblue")
        prev_hist = normalization(np.array(prev_hist[0]))
        # print("now_histの要素の数: "+str(len(now_hist[0])))
        # print("prev_histの要素の数: "+str(len(now_hist[0])))
        KL_value = KLdivergence(now_hist,prev_hist)
        print(str(range_start*100+roop_count*6)+"cm時のKL_Divergence: "+str(KL_value))
        JS_value = JSdivergence(now_hist,prev_hist)
        print(str(range_start*100+roop_count*6)+"cm時のJS_Divergence: "+str(JS_value)+"\n")
        KL_storage.append(KL_value)
        JS_storage.append(JS_value)
        roop_count += 1
    
    # plt.tight_layout()
    # plt.show()
    
    temp_KLlist = []
    temp_store_KLlist = []
    temp_JSlist = []
    temp_store_JSlist = []
    temp_KLlist.append(np.array(KL_storage))
    temp_JSlist.append(np.array(JS_storage))
    
    #ファイルからデータを読みこむ
    store_KLarr = np.loadtxt("KLDivergence_Sparse.csv",delimiter = ",")
    store_JSarr = np.loadtxt("JSDivergence_Sparse.csv",delimiter = ",")
    temp_store_KLlist.append(store_KLarr)
    temp_store_JSlist.append(store_JSarr)

    #データを追加
    store_KLarr = np.empty((0,num),int)
    store_JSarr = np.empty((0,num),int)
    for data in temp_store_KLlist:
        print(data)
        store_KLarr = np.append(store_KLarr,np.array(data),axis=0)
    # store_KLarr = np.append(store_KLarr,np.array(temp_store_KLlist),axis=0)
    for data in temp_store_KLlist:
        store_JSarr = np.append(store_JSarr,np.array(data),axis=0)
        # store_JSarr = np.append(store_JSarr,np.array(temp_store_JSlist),axis=0)
    store_KL = np.append(store_KLarr,np.array(temp_KLlist),axis=0)
    store_JS = np.append(store_JSarr,np.array(temp_JSlist),axis=0)

    #ファイルを保存
    store_KL = np.savetxt("KLDivergence_Sparse.csv",store_KL,delimiter=",")
    store_JS = np.savetxt("JSDivergence_Sparse.csv",store_JS,delimiter=",")

    #KL,JSの平均値
    # print("KL_Divergenceの平均値: "+str(np.sum(np.array(KL_storage))/num)+"\n")
    # print("JS_Divergenceの平均値: "+str(np.sum(np.array(JS_storage))/num)+"\n")
    
    #KLとJSを可視化
    X = list(range(int(range_start*100),int(range_end*100+1),6))
    plt.subplot(1,3,1)
    # plt.plot(range(len(KL_storage)),KL_storage,color='r',marker="o")  
    plt.plot(X,KL_storage,color='r',marker="o")  
    plt.title("KL Divergence") 
    plt.xlabel("Distance") 
    plt.ylabel("Amptitude") 

    plt.subplot(1,3,2)
    plt.plot(X,JS_storage,color='b',marker="o")  
    plt.title("JS Divergence") 
    plt.xlabel("Distance") 
    plt.ylabel("Amptitude") 

    plt.subplot(1,3,3)
    plt.plot(X,KL_storage,color='r',marker="o")  
    plt.plot(X,JS_storage,color='b',marker="o")  
    # plt.plot(X,KL_strage,color='r',marker="o",linewidth=0)  
    # plt.plot(X,JS_strage,color='b',marker="o",linewidth=0)  
    plt.title("Compare") 
    plt.xlabel("Distance") 
    plt.ylabel("Amptitude") 
    
    # plt.tight_layout()
    # plt.show()

    print("Disconnecting...")
    client.disconnect()
Пример #11
0
def test_repetition_mode(setup):
    client, sensor = setup

    def measure(config):
        client.start_session(config, check_config=False)
        client.get_next()
        t0 = time.time()

        missed = False
        n = 5

        for _ in range(n):
            info, data = client.get_next()
            if info["missed_data"]:
                missed = True

        t1 = time.time()
        client.stop_session()
        dt = (t1 - t0) / n
        return (dt, missed)

    config = configs.SparseServiceConfig()
    config.sensor = sensor
    config.range_interval = [0.3, 0.36]
    config.sweeps_per_frame = 50
    config.sweep_rate = 1e3

    nominal_f = config.sweep_rate / config.sweeps_per_frame
    nominal_dt = 1.0 / nominal_f

    # on demand / host driven
    config.repetition_mode = configs.SparseServiceConfig.RepetitionMode.HOST_DRIVEN

    # no rate limit
    config.update_rate = None
    dt, missed = measure(config)
    assert not missed
    assert dt == pytest.approx(nominal_dt, rel=0.15)

    # ok rate limit
    config.update_rate = 0.5 / nominal_dt
    dt, missed = measure(config)
    assert not missed
    assert dt == pytest.approx(nominal_dt * 2.0, rel=0.15)

    # too high rate limit
    config.update_rate = 2.0 / nominal_dt
    dt, missed = measure(config)

    if isinstance(client, clients.SocketClient):  # TODO
        assert missed

    assert dt == pytest.approx(nominal_dt, rel=0.15)

    # streaming / sensor driven
    config.repetition_mode = configs.SparseServiceConfig.RepetitionMode.SENSOR_DRIVEN

    # ok rate
    config.update_rate = 0.5 / nominal_dt
    dt, missed = measure(config)
    assert not missed
    assert dt == pytest.approx(nominal_dt * 2.0, rel=0.15)

    # too high rate
    config.update_rate = 2.0 / nominal_dt
    dt, missed = measure(config)
    assert missed
Пример #12
0
def test_mp():
    conf = configs.SparseServiceConfig()
    conf.downsampling_factor = 2
    [dump] = mp.Pool(1).map(dump_fun, [conf])
    assert dump == conf._dumps()