def main(): args = example_utils.ExampleArgumentParser(num_sens=1).parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) sensor_config = get_sensor_config() sensor_config.sensor = args.sensors processing_config = get_processing_config() session_info = client.setup_session(sensor_config) pg_updater = PGUpdater(sensor_config, processing_config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processor = PhaseTrackingProcessor(sensor_config, processing_config) # Record data data = [] counter = 0 while not interrupt_handler.got_signal: info, sweep = client.get_next() plot_data = processor.process(sweep) data.append(sweep) counter += 1 if plot_data is not None: try: pg_process.put_data(plot_data) except PGProccessDiedException: break # Save to file with open( "data" + str(get_sensor_config().sweep_rate) + str(counter) + ".pkl", "wb") as outfile: pickle.dump(data, outfile, pickle.HIGHEST_PROTOCOL) with open( "metadata" + str(get_sensor_config().sweep_rate) + str(counter) + ".pkl", "wb") as outfile: pickle.dump(session_info, outfile, pickle.HIGHEST_PROTOCOL) print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) client.squeeze = False config = configs.EnvelopeServiceConfig() config.sensor = args.sensors config.range_interval = [0.3, 0.8] config.sweep_rate = 70 config.gain = 0.6 # config.experimental_stitching = True # config.session_profile = configs.EnvelopeServiceConfig.MAX_SNR # config.running_average_factor = 0.5 # config.compensate_phase = False # not recommended info = client.setup_session(config) num_points = info["data_length"] pg_updater = PGUpdater(config, num_points) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") while not interrupt_handler.got_signal: info, data = client.get_next() try: pg_process.put_data(data) print(data) input("Enter") except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) client.squeeze = False config = configs.IQServiceConfig() config.sensor = args.sensors config.range_interval = [0.2, 0.6] config.sweep_rate = 30 config.gain = 0.6 config.sampling_mode = config.SAMPLING_MODE_A # config.running_average_factor = 0.5 # config.hw_accelerated_average_samples = 7 # config.stepsize = 1 info = client.setup_session(config) num_points = info["data_length"] pg_updater = PGUpdater(config, num_points) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") while not interrupt_handler.got_signal: info, data = client.get_next() try: pg_process.put_data(data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) client.squeeze = False sensor_config = get_sensor_config() sensor_config.sensor = args.sensors processing_config = get_processing_config() session_info = client.setup_session(sensor_config) pg_updater = PGUpdater(sensor_config, processing_config, session_info) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processor = Processor(sensor_config, processing_config, session_info) while not interrupt_handler.got_signal: info, sweep = client.get_next() plot_data = processor.process(sweep) if plot_data is not None: try: pg_process.put_data(plot_data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) client.squeeze = False config = configs.SparseServiceConfig() config.sensor = args.sensors config.range_interval = [0.24, 1.20] config.sweep_rate = 60 config.number_of_subsweeps = 16 # config.hw_accelerated_average_samples = 60 # config.stepsize = 1 client.setup_session(config) pg_updater = PGUpdater(config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") while not interrupt_handler.got_signal: info, data = client.get_next() try: pg_process.put_data(data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = JSONClient(args.socket_addr) elif args.spi: client = RegSPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = RegClient(port) client.squeeze = False config = configs.PowerBinServiceConfig() config.sensor = args.sensors config.range_interval = [0.1, 0.7] config.sweep_rate = 60 config.gain = 0.6 # config.bin_count = 8 client.setup_session(config) pg_updater = PGUpdater(config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") while not interrupt_handler.got_signal: info, data = client.get_next() try: pg_process.put_data(data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def loadData(): # Get data file_name = "data2.pkl" with open(file_name, "rb") as infile: data = pickle.load(infile) file_name_meta = "metadata2.pkl" with open(file_name_meta, "rb") as infile: session_info = pickle.load(infile) # Acquire metadata range_start = session_info["actual_range_start"] range_length = session_info["actual_range_length"] sweep_rate = session_info["frequency"] pg_updater = PGUpdater(sweep_rate, [range_start, range_start + range_length]) pg_process = PGProcess(pg_updater) pg_process.start() processor = PhaseTrackingProcessor(sweep_rate) # Set sleep behaviour use_sleep = False ans = input("Use sleep: [Y/n]") if ans == "Y" or ans == "y": use_sleep = True # Used for sleep time per_time = 1 / sweep_rate # DEBUG counter = 0 for i in data: start_time = time() # Process data plot_data = processor.process(i) counter += 1 if counter == 997 or counter == 1366: input("997 1366 Enter") if plot_data is not None: pg_process.put_data(plot_data) # Handle sleep time if use_sleep: end_time = time() sleep_time = per_time - (end_time - start_time) if sleep_time > 0: sleep(sleep_time * TIME_DELAY)
def main(): args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: print("Using detectors is only supported with the XM112 module") sys.exit() elif args.spi: client = RegSPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = RegClient(port) config = configs.DistancePeakDetectorConfig() config.sensor = args.sensors config.range_interval = [0.1, 0.7] config.sweep_rate = 60 config.gain = 0.5 client.setup_session(config) pg_updater = PGUpdater(config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") while not interrupt_handler.got_signal: info, data = client.get_next() try: pg_process.put_data(data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def main(): args = example_utils.ExampleArgumentParser(num_sens=1).parse_args() example_utils.config_logging(args) if args.socket_addr: client = JSONClient(args.socket_addr) else: port = args.serial_port or example_utils.autodetect_serial_port() client = RegClient(port) config = get_base_config() config.sensor = args.sensors client.setup_session(config) pg_updater = PGUpdater(config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processor = ObstacleDetectionProcessor(config) while not interrupt_handler.got_signal: info, sweep = client.get_next() plot_data = processor.process(sweep) if plot_data is not None: try: pg_process.put_data(plot_data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect()
def __init__(self, list_of_variables_for_threads, bluetooth_server): super(DataAcquisition, self).__init__() # Inherit threading vitals # Declaration of global variables self.go = list_of_variables_for_threads["go"] self.list_of_variables_for_threads = list_of_variables_for_threads self.bluetooth_server = bluetooth_server self.run_measurement = self.list_of_variables_for_threads['run_measurement'] self.window_slide = self.list_of_variables_for_threads["window_slide"] self.initiate_write_respitory_rate = list_of_variables_for_threads["initiate_write_heart_rate"] self.resp_rate_csv = [] # Setup for collecting data from Acconeer's radar files self.args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(self.args) # if self.args.socket_addr: # self.client = JSONClient(self.args.socket_addr) # print("RADAR Port = " + self.args.socket_addr) # else: # print("Radar serial port: " + self.args.serial_port) # port = self.args.serial_port or example_utils.autodetect_serial_port() # self.client = RegClient(port) self.client = JSONClient('0.0.0.0') print("args: " + str(self.args)) self.client.squeeze = False self.config = configs.IQServiceConfig() self.config.sensor = self.args.sensors print(self.args.sensors) # self.config.sensor = 1 # Settings for radar setup self.config.range_interval = [0.4, 1.4] # Measurement interval # Frequency for collecting data. To low means that fast movements can't be tracked. self.config.sweep_rate = 20 # Probably 40 is the best without graph # For use of sample freq in other threads and classes. self.list_of_variables_for_threads["sample_freq"] = self.config.sweep_rate # The hardware of UART/SPI limits the sweep rate. self.config.gain = 0.7 # Gain between 0 and 1. Larger gain increase the SNR, but come at a cost # with more instability. Optimally is around 0.7 self.info = self.client.setup_session(self.config) # Setup acconeer radar session self.data_length = self.info["data_length"] # Length of data per sample # Variables for tracking method self.first_data = True # first time data is processed self.dt = 1 / self.list_of_variables_for_threads["sample_freq"] self.low_pass_const = self.low_pass_filter_constants_function( 0.25, self.dt) # Constant for a small # low-pass filter to smooth the changes. tau changes the filter weight, lower tau means shorter delay. # Usually tau = 0.25 is good. self.number_of_averages = 2 # Number of averages for tracked peak self.plot_time_length = 10 # Length of plotted data # Number of time samples when plotting self.number_of_time_samples = int(self.plot_time_length / self.dt) self.tracked_distance_over_time = np.zeros( self.number_of_time_samples) # Array for distance over time plot self.local_peaks_index = [] # Index of big local peaks self.track_peak_index = [] # Index of last tracked peaks self.track_peaks_average_index = None # Average of last tracked peaks self.threshold = 1 # Threshold for removing small local peaks. Start value not important # Returned variables self.tracked_distance = None # distance to the tracked peak (m) self.tracked_amplitude = None self.tracked_phase = None self.tracked_data = None # the final tracked data that is returned # Variables for phase to distance and plotting self.low_pass_amplitude = None # low pass filtered amplitude self.low_pass_track_peak = None self.track_peak_relative_position = None # used for plotting # the relative distance that is measured from phase differences (mm) self.relative_distance = 0 # relative distance to signal process self.real_time_breathing_amplitude = 0 # to send to the application self.last_phase = 0 # tracked phase from previous loop # saves old values to remove bias in real time breathing plot self.old_realtime_breathing_amplitude = np.zeros(1000) self.c = 2.998e8 # light speed (m/s) self.freq = 60e9 # radar frequency (Hz) self.wave_length = self.c / self.freq # wave length of the radar self.delta_distance = 0 # difference in distance between the last two phases (m) self.delta_distance_low_pass = 0 # low pass filtered delta distance for plotting self.noise_run_time = 0 # number of run times with noise, used to remove noise self.not_noise_run_time = 0 # number of run times without noise # other # how often values are plotted and sent to the app self.modulo_base = int(self.list_of_variables_for_threads["sample_freq"] / 10) if self.modulo_base == 0: self.modulo_base = 1 print('modulo base', self.modulo_base) self.run_times = 0 # number of times run in run self.calibrating_time = 5 # Time sleep for passing through filters. Used for Real time breathing # Graphs self.plot_graphs = False # if plot the graphs or not if self.plot_graphs: self.pg_updater = PGUpdater(self.config) self.pg_process = PGProcess(self.pg_updater) self.pg_process.start() # acconeer graph self.low_pass_vel = 0 self.hist_vel = np.zeros(self.number_of_time_samples) self.hist_pos = np.zeros(self.number_of_time_samples) self.last_data = None # saved old data # filter self.highpass_HR = filter.Filter('highpass_HR') self.lowpass_HR = filter.Filter('lowpass_HR') self.highpass_RR = filter.Filter('highpass_RR') self.lowpass_RR = filter.Filter('lowpass_RR') self.HR_filtered_queue = list_of_variables_for_threads["HR_filtered_queue"] self.RR_filtered_queue = list_of_variables_for_threads["RR_filtered_queue"] # TODO remove self.RTB_final_queue = list_of_variables_for_threads["RTB_final_queue"] self.amp_data = []
class DataAcquisition(threading.Thread): def __init__(self, list_of_variables_for_threads, bluetooth_server): super(DataAcquisition, self).__init__() # Inherit threading vitals # Declaration of global variables self.go = list_of_variables_for_threads["go"] self.list_of_variables_for_threads = list_of_variables_for_threads self.bluetooth_server = bluetooth_server self.run_measurement = self.list_of_variables_for_threads['run_measurement'] self.window_slide = self.list_of_variables_for_threads["window_slide"] self.initiate_write_respitory_rate = list_of_variables_for_threads["initiate_write_heart_rate"] self.resp_rate_csv = [] # Setup for collecting data from Acconeer's radar files self.args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(self.args) # if self.args.socket_addr: # self.client = JSONClient(self.args.socket_addr) # print("RADAR Port = " + self.args.socket_addr) # else: # print("Radar serial port: " + self.args.serial_port) # port = self.args.serial_port or example_utils.autodetect_serial_port() # self.client = RegClient(port) self.client = JSONClient('0.0.0.0') print("args: " + str(self.args)) self.client.squeeze = False self.config = configs.IQServiceConfig() self.config.sensor = self.args.sensors print(self.args.sensors) # self.config.sensor = 1 # Settings for radar setup self.config.range_interval = [0.4, 1.4] # Measurement interval # Frequency for collecting data. To low means that fast movements can't be tracked. self.config.sweep_rate = 20 # Probably 40 is the best without graph # For use of sample freq in other threads and classes. self.list_of_variables_for_threads["sample_freq"] = self.config.sweep_rate # The hardware of UART/SPI limits the sweep rate. self.config.gain = 0.7 # Gain between 0 and 1. Larger gain increase the SNR, but come at a cost # with more instability. Optimally is around 0.7 self.info = self.client.setup_session(self.config) # Setup acconeer radar session self.data_length = self.info["data_length"] # Length of data per sample # Variables for tracking method self.first_data = True # first time data is processed self.dt = 1 / self.list_of_variables_for_threads["sample_freq"] self.low_pass_const = self.low_pass_filter_constants_function( 0.25, self.dt) # Constant for a small # low-pass filter to smooth the changes. tau changes the filter weight, lower tau means shorter delay. # Usually tau = 0.25 is good. self.number_of_averages = 2 # Number of averages for tracked peak self.plot_time_length = 10 # Length of plotted data # Number of time samples when plotting self.number_of_time_samples = int(self.plot_time_length / self.dt) self.tracked_distance_over_time = np.zeros( self.number_of_time_samples) # Array for distance over time plot self.local_peaks_index = [] # Index of big local peaks self.track_peak_index = [] # Index of last tracked peaks self.track_peaks_average_index = None # Average of last tracked peaks self.threshold = 1 # Threshold for removing small local peaks. Start value not important # Returned variables self.tracked_distance = None # distance to the tracked peak (m) self.tracked_amplitude = None self.tracked_phase = None self.tracked_data = None # the final tracked data that is returned # Variables for phase to distance and plotting self.low_pass_amplitude = None # low pass filtered amplitude self.low_pass_track_peak = None self.track_peak_relative_position = None # used for plotting # the relative distance that is measured from phase differences (mm) self.relative_distance = 0 # relative distance to signal process self.real_time_breathing_amplitude = 0 # to send to the application self.last_phase = 0 # tracked phase from previous loop # saves old values to remove bias in real time breathing plot self.old_realtime_breathing_amplitude = np.zeros(1000) self.c = 2.998e8 # light speed (m/s) self.freq = 60e9 # radar frequency (Hz) self.wave_length = self.c / self.freq # wave length of the radar self.delta_distance = 0 # difference in distance between the last two phases (m) self.delta_distance_low_pass = 0 # low pass filtered delta distance for plotting self.noise_run_time = 0 # number of run times with noise, used to remove noise self.not_noise_run_time = 0 # number of run times without noise # other # how often values are plotted and sent to the app self.modulo_base = int(self.list_of_variables_for_threads["sample_freq"] / 10) if self.modulo_base == 0: self.modulo_base = 1 print('modulo base', self.modulo_base) self.run_times = 0 # number of times run in run self.calibrating_time = 5 # Time sleep for passing through filters. Used for Real time breathing # Graphs self.plot_graphs = False # if plot the graphs or not if self.plot_graphs: self.pg_updater = PGUpdater(self.config) self.pg_process = PGProcess(self.pg_updater) self.pg_process.start() # acconeer graph self.low_pass_vel = 0 self.hist_vel = np.zeros(self.number_of_time_samples) self.hist_pos = np.zeros(self.number_of_time_samples) self.last_data = None # saved old data # filter self.highpass_HR = filter.Filter('highpass_HR') self.lowpass_HR = filter.Filter('lowpass_HR') self.highpass_RR = filter.Filter('highpass_RR') self.lowpass_RR = filter.Filter('lowpass_RR') self.HR_filtered_queue = list_of_variables_for_threads["HR_filtered_queue"] self.RR_filtered_queue = list_of_variables_for_threads["RR_filtered_queue"] # TODO remove self.RTB_final_queue = list_of_variables_for_threads["RTB_final_queue"] self.amp_data = [] def run(self): self.client.start_streaming() # Starts Acconeers streaming server while self.go: self.run_times = self.run_times + 1 # This data is an 1D array in terminal print, not in Python script however.... data = self.get_data() tracked_data = self.tracking(data) # processing data and tracking peaks # Test with acconeer filter for schmitt. if tracked_data is not None: # filter the data highpass_filtered_data_HR = self.highpass_HR.filter( tracked_data["relative distance"]) bandpass_filtered_data_HR = self.lowpass_HR.filter(highpass_filtered_data_HR) highpass_filtered_data_RR = self.highpass_RR.filter( tracked_data["relative distance"]) bandpass_filtered_data_RR = self.lowpass_RR.filter(highpass_filtered_data_RR) if self.run_measurement: self.HR_filtered_queue.put( bandpass_filtered_data_HR) # Put filtered data in output queue to send to SignalProcessing self.RR_filtered_queue.put(bandpass_filtered_data_RR) # self.RTB_final_queue.put(bandpass_filtered_data_RR) # Send to app if self.run_times % self.modulo_base == 0: # Send real time breathing amplitude to the application self.bluetooth_server.write_data_to_app( tracked_data["real time breathing amplitude"], 'real time breath') # self.bluetooth_server.write_data_to_app( # bandpass_filtered_data_HR, 'real time breath') self.csv_filtered_respitory(bandpass_filtered_data_RR) if self.plot_graphs and self.run_times % self.modulo_base == 0: try: self.pg_process.put_data(tracked_data) # plot data except PGProccessDiedException: self.go.pop(0) break self.RR_filtered_queue.put(0) # to quit the signal processing thread # print('before for loop to fill HR queue') for i in range(600): # print("Data acq filling HR queue with 0:s") self.HR_filtered_queue.put(0) print("out of while go in radar") self.client.disconnect() self.pg_process.close() def get_data(self): # self.client.get_next() info, data = self.client.get_next() # get the next data from the radar # print('info',info[-1]['sequence_number'],'run_times',self.run_times) if info[-1]['sequence_number'] > self.run_times + 10: # to remove delay if handling the data takes longer time than for the radar to get it print("sequence diff over 10, removing difference", info[-1]['sequence_number']-self.run_times) for i in range(0, info[-1]['sequence_number']-self.run_times): self.client.get_next() # getting the data without using it info, data = self.client.get_next() self.run_times = info[-1]['sequence_number'] return data def tracking(self, data): data = np.array(data).flatten() data_length = len(data) amplitude = np.abs(data) power = amplitude * amplitude # Find and track peaks if np.sum(amplitude)/data_length > 1e-6: max_peak_index = np.argmax(power) max_peak_amplitude = amplitude[max_peak_index] if self.first_data: # first time self.track_peak_index.append(max_peak_index) # global max peak self.track_peaks_average_index = max_peak_index else: self.local_peaks_index, _ = signal.find_peaks(power) # find local max in data index = 0 index_list = [] for peak in self.local_peaks_index: if np.abs(amplitude[peak]) < self.threshold: index_list.append(index) index += 1 # deletes all indexes with amplitude < threshold np.delete(self.local_peaks_index, index_list) if len(self.local_peaks_index) == 0: # if no large peaks were found, use the latest value instead print("No local peak found") self.track_peak_index.append(self.track_peak_index[-1]) else: # Difference between found local peaks and last tracked peak peak_difference_index = np.subtract( self.local_peaks_index, self.track_peaks_average_index) # The tracked peak is expected to be the closest local peak found self.track_peak_index.append( self.local_peaks_index[np.argmin(np.abs(peak_difference_index))]) if len(self.track_peak_index) > self.number_of_averages: self.track_peak_index.pop(0) # remove oldest value if amplitude[self.track_peak_index[-1]] < 0.5 * max_peak_amplitude: # if there is a much larger peak self.track_peak_index.clear() # reset the array self.track_peak_index.append(max_peak_index) # new peak is global max self.track_peaks_average_index = int( # Average and smooth the movements of the tracked peak np.round(self.low_pass_const * (np.average(self.track_peak_index)) + (1 - self.low_pass_const) * self.track_peaks_average_index)) # threshold for next peak self.threshold = np.abs(amplitude[self.track_peaks_average_index]) * 0.8 # so it won't follow a much smaller peak self.track_peak_relative_position = self.track_peaks_average_index / \ len(data) # Position of the peak # relative the range of the data # Converts relative distance to absolute distance self.tracked_distance = (1 - self.track_peaks_average_index / len(data)) * self.config.range_interval[ 0] + self.track_peaks_average_index / len(data) * self.config.range_interval[1] # Tracked amplitude is absolute value of data for the tracked index # TODO byt till denna self.tracked_amplitude = amplitude[self.track_peaks_average_index] # Tracked phase is the angle between I and Q in data for tracked index self.tracked_phase = np.angle(data[self.track_peaks_average_index]) else: # track_peak_relative_position = 0 self.not_noise_run_time = 0 self.tracked_distance = 0 self.tracked_phase = 0 self.tracked_amplitude = 0 if self.first_data: # first time self.track_peaks_average_index = 0 # Plots, phase to distance and noise ignoring if self.first_data: self.tracked_data = None self.low_pass_amplitude = amplitude else: # Amplitude of data for plotting self.low_pass_amplitude = self.low_pass_const * amplitude + \ (1 - self.low_pass_const) * self.low_pass_amplitude # real time graph over the whole range # self.tracked_distance_over_time = np.roll( # self.tracked_distance_over_time, -1) # Distance over time # self.tracked_distance_over_time[-1] = self.tracked_distance # real time graph zoomed in # com_idx = int(self.track_peak_relative_position * data_length) # delta_angle = np.angle(data[com_idx] * np.conj(self.last_data[com_idx])) # vel = self.list_of_variables_for_threads["sample_freq"] * 2.5 * delta_angle / (2 * np.pi) # self.low_pass_vel = self.low_pass_const * vel + \ # (1 - self.low_pass_const) * self.low_pass_vel # dp = self.low_pass_vel / self.list_of_variables_for_threads["sample_freq"] # self.hist_pos = np.roll(self.hist_pos, -1) # self.hist_pos[-1] = self.hist_pos[-2] + dp # plot_hist_pos = self.hist_pos - self.hist_pos.mean() plot_hist_pos = None # self.RTB_final_queue.put(plot_hist_pos[-1]*10) # Gets tracked breathing in mm # self.RR_filtered_queue.put(plot_hist_pos[-1]*10) # Phase to distance and unwrapping discount = 2 # TODO optimize for movements if self.tracked_phase < -np.pi + discount and self.last_phase > np.pi - discount: wrapped_phase = self.tracked_phase + 2 * np.pi elif self.tracked_phase > np.pi - discount and self.last_phase < -np.pi + discount: wrapped_phase = self.tracked_phase - 2 * np.pi else: wrapped_phase = self.tracked_phase # Delta distance self.delta_distance = self.wave_length * \ (wrapped_phase - self.last_phase) / (4 * np.pi) # Low pass filtered delta distance self.delta_distance_low_pass = self.wave_length * (wrapped_phase - self.last_phase) / (4 * np.pi) * self.low_pass_const + \ (1 - self.low_pass_const) * \ self.delta_distance_low_pass # calculates the distance traveled from phase differences # TODO testa med konjugat # delta_angle = np.angle(data[self.track_peaks_average_index] * np.conj(self.last_data[self.track_peaks_average_index])) # vel = self.list_of_variables_for_threads["sample_freq"] * 2.5 * delta_angle / (2 * np.pi) # self.low_pass_vel = self.low_pass_const * vel + \ # (1 - self.low_pass_const) * self.low_pass_vel # self.delta_distance = self.low_pass_vel / self.list_of_variables_for_threads["sample_freq"] / 1000 # Remove Noise # Indicate if the current measurement is noise or not, to not use the noise in signal_processing if np.amax(self.low_pass_amplitude) < 0.01: # Noise self.noise_run_time += 1 if self.noise_run_time >= 10 and self.not_noise_run_time >= 5: self.not_noise_run_time = 0 else: # Real value self.not_noise_run_time += 1 if self.noise_run_time >= 10 and self.not_noise_run_time >= 5: self.noise_run_time = 0 if self.noise_run_time >= 10 and self.not_noise_run_time < 5: # If there has been noise at least 10 times with less than 5 real values, the data is considered to be purely noise. self.tracked_distance = 0 self.delta_distance = 0 self.delta_distance_low_pass = 0 if self.real_time_breathing_amplitude == 0: self.old_realtime_breathing_amplitude = np.zeros(1000) self.relative_distance = self.relative_distance - self.delta_distance # relative distance in m self.real_time_breathing_amplitude = self.real_time_breathing_amplitude - \ self.delta_distance_low_pass # real time breathing in m # The minus sign comes from changing coordinate system; what the radar think is outward is inward for the person that is measured on self.last_phase = self.tracked_phase # Code to remove bias that comes from larger movements that is not completely captured by the radar. self.old_realtime_breathing_amplitude = np.roll( self.old_realtime_breathing_amplitude, -1) self.old_realtime_breathing_amplitude[-1] = self.real_time_breathing_amplitude self.old_realtime_breathing_amplitude = self.old_realtime_breathing_amplitude - \ self.old_realtime_breathing_amplitude.mean() / 4 self.real_time_breathing_amplitude = self.old_realtime_breathing_amplitude[-1] # self.amp_data.append(self.relative_distance*1000) # if len(self.amp_data) > 500: # print('mean', np.mean(self.amp_data)) # print('variance', np.var(self.amp_data)) # print('min', np.amin(self.amp_data)) # print('max', np.amax(self.amp_data)) # print('std', np.std(self.amp_data)) # print('diff', np.amax(self.amp_data) - np.amin(self.amp_data)) # self.amp_data.clear() # Tracked data to return and plot self.tracked_data = {"tracked distance": self.tracked_distance, "tracked amplitude": self.tracked_amplitude, "tracked phase": self.tracked_phase, "abs": self.low_pass_amplitude, "tracked distance over time": plot_hist_pos, "tracked distance over time 2": self.tracked_distance_over_time, "relative distance": self.relative_distance * 1000, "real time breathing amplitude": self.real_time_breathing_amplitude*1000} self.last_data = data self.first_data = False return self.tracked_data # Creates low-pass filter constants for a very small low-pass filter def low_pass_filter_constants_function(self, tau, dt): return 1 - np.exp(-dt / tau) def csv_filtered_respitory(self, bandpass_filtered_data_RR): if self.initiate_write_respitory_rate and time.time() - self.list_of_variables_for_threads["start_write_to_csv_time"] < 5*60: #print("Inside save to csv respitory rate") self.resp_rate_csv.append(bandpass_filtered_data_RR) # lf.heart_rate_reliability_csv.append(found_peak_reliability_int) elif self.initiate_write_respitory_rate: self.go.pop(0) self.list_of_variables_for_threads["go"] = self.go # print("Out of while go heart_rate") np_csv = np.asarray(self.resp_rate_csv) # print("Saved as numpy array") np.savetxt("respitory_rate.csv", np_csv, delimiter=";") print("Should have saved CSV") self.resp_rate_csv.clear() # Remove Bluetooth clients for client in self.bluetooth_server.client_list: print('try to remove client ' + str(self.bluetooth_server.address_list[self.bluetooth_server.client_list.index(client)])) client.close() print('remove client ' + str(self.bluetooth_server.address_list[self.bluetooth_server.client_list.index(client)])) self.bluetooth_server.server.close() print("server is now closed") os.system("echo 'power off\nquit' | bluetoothctl")
def main(): #args = example_utils.ExampleArgumentParser(num_sens=1).parse_args() args = example_utils.ExampleArgumentParser().parse_args() example_utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = UARTClient(port) config = configs.SparseServiceConfig() config.sensor = args.sensors num_of_sensors = len(config.sensor) config.range_interval = [0.3, 1.3] config.sweep_rate = 80 config.gain = 0.6 config.number_of_subsweeps = 32 sensor_config = config processing_config = ProcessingConfiguration() session_info = client.setup_session(sensor_config) pg_updaters = [] for i in range(num_of_sensors): pg_updaters.append( PGUpdater(sensor_config, processing_config, session_info, sensor_num=i + 1)) pg_processes = [] for i in range(num_of_sensors): pg_processes.append(PGProcess(pg_updaters[i])) pg_processes[i].start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processors = [] for i in range(num_of_sensors): processors.append( PresenceDetectionSparseProcessor(sensor_config, processing_config, session_info)) while not interrupt_handler.got_signal: info, sweep = client.get_next() if (num_of_sensors > 1): for i in range(num_of_sensors): plot_data = processors[i].process(sweep[i]) if plot_data is not None: try: pg_processes[i].put_data(plot_data) except PGProccessDiedException: break else: plot_data = processors[0].process(sweep) if plot_data is not None: try: pg_processes[0].put_data(plot_data) except PGProccessDiedException: break print("Disconnecting...") for i in range(num_of_sensors): pg_processes[i].close() client.disconnect()