Пример #1
0
 def drawdos(self):
     from aces.ElectronicDOS.electronicdos import ElectronicDOS
     doscar = ElectronicDOS()
     #orbital_dos = doscar.sum_ms_dos()
     ## Create a list of each atom type to sum over.
     #type_list = []
     #n = 0
     #for i in range(len(doscar.unit_cell.atom_types)):
     #    type_list.append([])
     #    for j in range(doscar.unit_cell.atom_types[i]):
     #        type_list[i].append(n)
     #        n += 1
     ## Sum dos over sets of atoms.
     #partial_dos = doscar.sum_site_dos(type_list,orbital_dos)
     dos = doscar.write_dos([doscar.tot_dos])
     write(dos, 'dos.txt')
     dos = np.loadtxt('dos.txt')
     f = shell_exec("grep fermi OUTCAR|tail -1")
     from aces.scanf import sscanf
     f = sscanf(f, "E-fermi :   %f     XC(G=0):")
     with fig("dos.png"):
         pl.xlabel("Energy-Ef (eV)")
         pl.ylabel("DOS")
         pl.plot(dos[:, 0] - f, dos[:, 1], lw=2)
         pl.xlim([-4, 4])
Пример #2
0
    def grtao(self):
        cd('T300K')

        # 画格林艾森系数与驰豫时间的关系
        w = np.loadtxt('BTE.w_final')[:, 1]
        w = np.abs(w)
        q = np.loadtxt(open('../BTE.qpoints'))
        n = len(q)
        w = w.T.reshape([-1, n])
        w = np.einsum('jk->kj', w)
        w.flags.writeable = True
        omega = np.loadtxt('../BTE.omega') / (2.0 * np.pi)
        w[omega < omega.flatten().max() * 0.005] = float('nan')
        tao = 1.0 / w + 1e-6
        g = np.loadtxt('../BTE.gruneisen')
        with fig("gruneisen_tao.png"):
            pl.semilogy(
                g.flatten(),
                tao.flatten(),
                ls='.',
                marker='.',
                color='r',
                markersize=10)
            pl.ylabel('Relaxation Time (ps)')
            pl.xlabel('Gruneisen Coeffecient')
            pl.xlim([-10, 5])
            pl.ylim([0, 1e4])
Пример #3
0
 def drawdos(self):
     from aces.ElectronicDOS.electronicdos import ElectronicDOS
     doscar = ElectronicDOS()
     # orbital_dos = doscar.sum_ms_dos()
     # Create a list of each atom type to sum over.
     # type_list = []
     # n = 0
     # for i in range(len(doscar.unit_cell.atom_types)):
     #    type_list.append([])
     #    for j in range(doscar.unit_cell.atom_types[i]):
     #        type_list[i].append(n)
     #        n += 1
     # Sum dos over sets of atoms.
     # partial_dos = doscar.sum_site_dos(type_list,orbital_dos)
     dos = doscar.write_dos([doscar.tot_dos])
     tl.write(dos, 'dos.txt')
     dos = np.loadtxt('dos.txt')
     f = tl.shell_exec("grep fermi OUTCAR|tail -1")
     from aces.scanf import sscanf
     f = sscanf(f, "E-fermi :   %f     XC(G=0):")
     with fig("dos.png"):
         pl.xlabel("Energy-Ef (eV)")
         pl.ylabel("DOS")
         pl.plot(dos[:, 0] - f, dos[:, 1], lw=2)
         pl.xlim([-4, 4])
Пример #4
0
 def kappat(self):
     a = np.loadtxt("BTE.KappaTensorVsT_CONV")
     import matplotlib as mpl
     mpl.rcParams['axes.color_cycle'] = ['#e24a33', '#2A749A', '#988ed5']
     with fig('T_kappa.png', legend=True):
         ts = a[:, 0]
         fil = ts <= 800
         ts = a[fil, 0]
         k1 = 1.0 / 3 * (a[fil, 1] + a[fil, 5] + a[fil, 9])
         pl.plot(ts, k1, lw=3, label="Iso-Phonon")
         pl.xlabel("Tempeature (K)")
         pl.ylabel('Thermal Conductivity (W/mK)')
         file = ls("*.trace")[0]
         d = np.loadtxt(file, skiprows=1)
         idx = d[:, 0] == d[np.abs(np.unique(d[:, 0])).argmin(), 0]
         tao = 2.93e-14
         pl.plot(d[idx, 1], d[idx, 7] * tao, lw=3, label="Iso-Electron")
         pl.xlim([200, 800])
Пример #5
0
 def kappat(self):
     a = np.loadtxt("BTE.KappaTensorVsT_CONV")
     import matplotlib as mpl
     mpl.rcParams['axes.color_cycle'] = ['#e24a33', '#2A749A', '#988ed5']
     with fig('T_kappa.png', legend=True):
         ts = a[:, 0]
         fil = ts <= 800
         ts = a[fil, 0]
         k1 = 1.0 / 3 * (a[fil, 1] + a[fil, 5] + a[fil, 9])
         pl.plot(ts, k1, lw=3, label="Iso-Phonon")
         pl.xlabel("Tempeature (K)")
         pl.ylabel('Thermal Conductivity (W/mK)')
         file = tl.ls("*.trace")[0]
         d = np.loadtxt(file, skiprows=1)
         idx = d[:, 0] == d[np.abs(np.unique(d[:, 0])).argmin(), 0]
         tao = 2.93e-14
         pl.plot(d[idx, 1], d[idx, 7] * tao, lw=3, label="Iso-Electron")
         pl.xlim([200, 800])
# -*- coding: utf-8 -*-
# @Author: YangZhou
# @Date:   2017-06-30 15:31:06
# @Last Modified by:   YangZhou
# @Last Modified time: 2017-06-30 15:49:41
import pandas as pd
from aces.graph import fig, pl, setLegend
df = pd.read_csv("dos/knot/0/region_dos.txt", sep=r"[ \t]", engine="python")
npair = len(df.columns) / 2
datas = []
for i in range(npair):
    rname = df.columns[i * 2][5:]
    datas.append((df['freq_' + rname], df['dos_' + rname], "region:" + rname))
dc = pd.read_csv("dos/knot/0/graphenedos.txt", sep=r"[ \t]", engine="python")
datas.append((dc[dc.columns[0]], dc[dc.columns[1]], 'GNR'))

with fig("dos.eps", figsize=(10, 6)):
    for d in datas:
        pl.plot(d[0], d[1], label=d[2])
    setLegend(pl)
    pl.xlabel("Frequency (THz)")
    pl.ylabel("Phonon Density of States")
    pl.xlim([0, 60])
Пример #7
0
#	ylabel='Stress (GPa)',
#	datas=datas
#	,linewidth=1
#	,filename='stress_strain.png',legend=False,grid=True)
s = []
for i, u in enumerate(c):
    if not len(u) == len(c[0]):
        print i
        continue
    s.append(u)
s = np.array(s)
x = s[0, :, 0]
y = s[:, :, 1].mean(axis=0)
dy = s[:, :, 1].std(axis=0)
y1 = y + dy / 2.0
y2 = y - dy / 2.0
with fig("ave_stress.png"):
    pl.fill_between(x, y1, y2, color="#cccccc")
    pl.plot(x, y, lw=2, color='r')
    pl.xlabel('Strain')
    pl.ylabel('Stress (GPa)')
    pl.xlim([0, 0.8])
    pl.ylim([0, 21])
with fig('stress_strain.png'):
    for y in s[:, :, 1]:
        pl.plot(x, y, color="black", alpha=0.01)
        pl.xlabel('Strain')
        pl.ylabel('Stress (GPa)')
        pl.xlim([0, 0.8])
        pl.ylim([0, 30])
Пример #8
0
    def post(self):
        import matplotlib as mpl
        mpl.rcParams['axes.color_cycle'] = ['#e24a33', '#2A749A', '#988ed5']

        file = ls("*.trace")[0]
        d = np.loadtxt(file, skiprows=1)
        head = shell_exec("head -1 %s" % file)
        if ("Ry" in head):
            d[:, 0] -= self.get_outfermi()
            d[:, 0] *= 13.6
        T = np.unique(d[:, 1])
        zz = d[np.abs(np.unique(d[:, 0])).argmin(), 0]
        Tplot = [200, 300, 700]
        tao = 2.93e-14
        #tao=2.93e-13
        #T=[300]
        with fig("Seebeck.png", legend=True):
            #pl.style.use('ggplot')
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("Seebeck Coefficient ($\mu$V/K)")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                pl.plot(d[idx, 0], d[idx, 4], lw=3, label="T=" + str(t) + "K")

        with fig("kappa.png", legend=True):  #W/mK*1/s
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("Electronic Thermal Conductivity (W/mK)")
            for t in Tplot:
                idx = (d[:, 1] == t) * (d[:, 0] <= 1.5) * (d[:, 0] >= -1.5)
                pl.plot(d[idx, 0],
                        d[idx, 7] * tao,
                        lw=3,
                        label="T=" + str(t) + "K")
            pl.xlim([-1.5, 1.5])
        with fig("kappa_t.png"):
            pl.xlabel("Temperature (K)")
            pl.ylabel("Electronic Thermal Conductivity (W/mK)")
            idx = d[:, 0] == zz
            pl.plot(d[idx, 1], d[idx, 7] * tao, lw=3)
        with fig("powerfactor.png", legend=True):
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$S^{2}\sigma (mW/mK^2)$")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                S = d[idx, 4] * 1e-6
                sigma = d[idx, 5] * tao
                pl.plot(d[idx, 0],
                        S * S * sigma * 1e3,
                        lw=3,
                        label="T=" + str(t) + "K")
        try:
            a = np.loadtxt("BTE.KappaTensorVsT_CONV")
            k1 = 1.0 / 3 * (a[:, 1] + a[:, 5] + a[:, 9])
            with fig("ZT.png", legend=True, ncol=1):
                pl.xlabel("$\\mu$ (eV)")
                pl.ylabel("$ZT$")
                pl.xlim([-1.5, 1.5])
                pl.ylim([0, 1.0])
                for t in Tplot:
                    idx = d[:, 1] == t
                    fil = a[:, 0] == t
                    tc = k1[fil][0]
                    S = d[idx, 4] * 1e-6
                    sigma = d[idx, 5] * tao
                    po = S * S * sigma
                    ke = d[idx, 7] * tao
                    pl.plot(d[idx, 0],
                            po * t / (ke + tc),
                            lw=3,
                            label="T=" + str(t) + "K")
        except Exception as e:
            print e
        with fig("sigma.png", legend=True):  #1/(ohm m)*1/s
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$\\sigma (10^6/\\Omega m) $")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                sigma = d[idx, 5] * tao
                pl.plot(d[idx, 0],
                        sigma * 1e-6,
                        lw=3,
                        label="T=" + str(t) + "K")

        with fig("Rh-n.png", legend=True):
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$\\sigma/\\tau $")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                Rh = d[idx, 6]
                n = d[idx, 2]
                pl.plot(d[idx, 0], 1 / Rh, lw=3, label="Rh,T=" + str(t) + "K")
                pl.plot(d[idx, 0], n, lw=3, label="nT=" + str(t) + "K")
Пример #9
0
    def post(self):
        import matplotlib as mpl
        mpl.rcParams['axes.color_cycle'] = ['#e24a33', '#2A749A', '#988ed5']

        file = tl.ls("*.trace")[0]
        d = np.loadtxt(file, skiprows=1)
        head = tl.shell_exec("head -1 %s" % file)
        if("Ry" in head):
            d[:, 0] -= self.get_outfermi()
            d[:, 0] *= 13.6
        # T=np.unique(d[:,1])
        zz = d[np.abs(np.unique(d[:, 0])).argmin(), 0]
        Tplot = [200, 300, 700]
        tao = 2.93e-14
        # tao=2.93e-13
        # T=[300]
        with fig("Seebeck.png", legend=True):
            # pl.style.use('ggplot')
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("Seebeck Coefficient ($\mu$V/K)")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                pl.plot(d[idx, 0], d[idx, 4], lw=3, label="T=" + str(t) + "K")

        with fig("kappa.png", legend=True):  # W/mK*1/s
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("Electronic Thermal Conductivity (W/mK)")
            for t in Tplot:
                idx = (d[:, 1] == t) * (d[:, 0] <= 1.5) * (d[:, 0] >= -1.5)
                pl.plot(d[idx, 0], d[idx, 7] * tao,
                        lw=3, label="T=" + str(t) + "K")
            pl.xlim([-1.5, 1.5])
        with fig("kappa_t.png"):
            pl.xlabel("Temperature (K)")
            pl.ylabel("Electronic Thermal Conductivity (W/mK)")
            idx = d[:, 0] == zz
            pl.plot(d[idx, 1], d[idx, 7] * tao, lw=3)
        with fig("powerfactor.png", legend=True):
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$S^{2}\sigma (mW/mK^2)$")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                S = d[idx, 4] * 1e-6
                sigma = d[idx, 5] * tao
                pl.plot(d[idx, 0], S * S * sigma * 1e3,
                        lw=3, label="T=" + str(t) + "K")
        try:
            a = np.loadtxt("BTE.KappaTensorVsT_CONV")
            k1 = 1.0 / 3 * (a[:, 1] + a[:, 5] + a[:, 9])
            with fig("ZT.png", legend=True, ncol=1):
                pl.xlabel("$\\mu$ (eV)")
                pl.ylabel("$ZT$")
                pl.xlim([-1.5, 1.5])
                pl.ylim([0, 1.0])
                for t in Tplot:
                    idx = d[:, 1] == t
                    fil = a[:, 0] == t
                    tc = k1[fil][0]
                    S = d[idx, 4] * 1e-6
                    sigma = d[idx, 5] * tao
                    po = S * S * sigma
                    ke = d[idx, 7] * tao
                    pl.plot(d[idx, 0], po * t / (ke + tc),
                            lw=3, label="T=" + str(t) + "K")
        except Exception as e:
            print(e)
        with fig("sigma.png", legend=True):  # 1/(ohm m)*1/s
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$\\sigma (10^6/\\Omega m) $")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                sigma = d[idx, 5] * tao
                pl.plot(d[idx, 0], sigma * 1e-6, lw=3,
                        label="T=" + str(t) + "K")

        with fig("Rh-n.png", legend=True):
            pl.xlabel("$\\mu$ (eV)")
            pl.ylabel("$\\sigma/\\tau $")
            pl.xlim([-1.5, 1.5])
            for t in Tplot:
                idx = d[:, 1] == t
                Rh = d[idx, 6]
                n = d[idx, 2]
                pl.plot(d[idx, 0], 1 / Rh, lw=3, label="Rh,T=" + str(t) + "K")
                pl.plot(d[idx, 0], n, lw=3, label="nT=" + str(t) + "K")
Пример #10
0
    def postold(self):
        try:
            df = pd.read_csv(
                "BTE.kappa_scalar",
                sep=r"[ \t]+",
                header=None,
                names=['step', 'kappa'],
                engine='python')
            ks = np.array(df['kappa'])
            plot(
                (np.array(df['step']), 'Iteration Step'),
                (ks, 'Thermal Conductivity (W/mK)'),
                'kappa_scalar.png',
                grid=True,
                linewidth=2)
        except Exception as e:
            print(e)

        try:
            df = pd.read_csv(
                "BTE.cumulative_kappa_scalar",
                sep=r"[ \t]+",
                header=None,
                names=['l', 'kappa'],
                engine='python')
            ks = np.array(df['kappa'])
            plot(
                (np.array(df['l']),
                 'Cutoff Mean Free Path for Phonons (Angstrom)'),
                (ks, 'Thermal Conductivity (W/mK)'),
                'cumulative_kappa_scalar.png',
                grid=True,
                linewidth=2,
                logx=True)
        except Exception as e:
            print(e)
        try:
            omega = np.loadtxt('BTE.omega') / (2.0 * np.pi)
            kappa = np.loadtxt('BTE.kappa')[-1, 1:]
            kappa = np.einsum('jji', kappa.reshape([3, 3, -1])) / 3.0
            plot(
                (np.arange(len(omega[0])), 'Band'),
                (kappa, 'Thermal Conductivity (W/mK)'),
                'kappa_band.png',
                grid=True,
                linewidth=2)
            plot(
                (np.arange(len(omega[0])), 'Band'),
                (kappa.cumsum(), 'Thermal Conductivity (W/mK)'),
                'cumulative_kappa_band.png',
                grid=True,
                linewidth=2)
        except Exception as e:
            print(e)
        try:
            w = np.loadtxt('BTE.w_final')
            w = np.abs(w)
            w[omega < omega.flatten().max() * 0.005] = float('nan')
            plot(
                (omega.flatten(), 'Frequency (THz)'), (w.flatten(),
                                                       'Scatter Rate (THz)'),
                'scatter_freq.png',
                grid=True,
                scatter=True,
                logy=True)
            tao = 1.0 / w + 1e-6
            with fig('tao_freq.png'):
                pl.semilogy(
                    omega.flatten(),
                    tao.flatten(),
                    linestyle='.',
                    marker='.',
                    color='r',
                    markersize=5)
                pl.xlabel('Frequency (THz)')
                pl.ylabel('Relaxation Time (ps)')
                pl.grid(True)
                pl.xlim([0, omega.max()])
                # pl.ylim([0,tao.flatten().max()])
            to_txt(['freq', 'tao'],
                   np.c_[omega.flatten(), tao.flatten()], 'tao_freq.txt')
        except Exception as e:
            print(e)
        """
        if not exists('relaxtime'):mkdir('relaxtime')
        cd('relaxtime')
        for i,om in enumerate(omega[:6]):
            print "q : ",i
            plot((om,'Frequency (THz)'),(tao[i],'Relaxation Time (ps)'),
            'tao_freq_q%d.png'%i,grid=True,scatter=True,logx=True,logy=True)
        cd('..')
        """

        try:
            v = np.loadtxt(open('BTE.v'))
            n, m = v.shape
            v = v.reshape([n, 3, m / 3])
            v = np.linalg.norm(v, axis=1)
            y = (v.flatten(), 'Group Velocity (nm/ps)')
            plot(
                (omega.flatten(), 'Frequency (THz)'),
                y,
                'v_freq.png',
                grid=True,
                scatter=True)
            to_txt(['freq', 'vg'],
                   np.c_[omega.flatten(), v.flatten()], 'v_freq.txt')
        except Exception as e:
            print(e)
        try:
            l = v * tao
            l[l < 1e-6] = None
            plot(
                (omega.flatten(), 'Frequency (THz)'), (l.flatten(),
                                                       'Mean Free Path (nm)'),
                'lamda_freq.png',
                grid=True,
                scatter=True,
                logy=True,
                logx=True,
                xmin=0)
            to_txt(['freq', 'mfp'],
                   np.c_[omega.flatten(), l.flatten()], 'lamda_freq.txt')
        except Exception as e:
            print(e)
        try:
            q = np.loadtxt(open('BTE.qpoints'))
            qnorm = np.linalg.norm(q[:, -3:], axis=1)
            data = []
            n, m = w.shape
            for i in range(m):
                data.append([qnorm, w[:, i], 'b'])
            series(
                xlabel='|q| (1/nm)',
                ylabel='Scatter Rate (THz)',
                datas=data,
                filename='branchscatter.png',
                scatter=True,
                legend=False,
                logx=True,
                logy=True)
        except Exception as e:
            print(e)
Пример #11
0
    def post(self):
        cd('T300K')
        try:
            df = pd.read_csv(
                "BTE.kappa_scalar",
                sep=r"[ \t]+",
                header=None,
                names=['step', 'kappa'],
                engine='python')
            ks = np.array(df['kappa'])
            plot(
                (np.array(df['step']), 'Iteration Step'),
                (ks, 'Thermal Conductivity (W/mK)'),
                'kappa_scalar.png',
                grid=True,
                linewidth=2)
        except Exception as e:
            print(e)

        try:
            df = pd.read_csv(
                "BTE.cumulative_kappa_scalar",
                sep=r"[ \t]+",
                header=None,
                names=['l', 'kappa'],
                engine='python')
            ks = np.array(df['kappa'])
            plot(
                (np.array(df['l']),
                 'Cutoff Mean Free Path for Phonons (Angstrom)'),
                (ks, 'Thermal Conductivity (W/mK)'),
                'cumulative_kappa_scalar.png',
                grid=True,
                linewidth=2,
                logx=True)
        except Exception as e:
            print(e)
        try:
            omega = np.loadtxt('../BTE.omega') / (2.0 * np.pi)
            kappa = np.loadtxt('BTE.kappa')[-1, 1:]
            kappa = np.einsum('jji', kappa.reshape([3, 3, -1])) / 3.0
            plot(
                (np.arange(len(omega[0])), 'Band'),
                (kappa, 'Thermal Conductivity (W/mK)'),
                'kappa_band.png',
                grid=True,
                linewidth=2)
            plot(
                (np.arange(len(omega[0])), 'Band'),
                (kappa.cumsum(), 'Thermal Conductivity (W/mK)'),
                'cumulative_kappa_band.png',
                grid=True,
                linewidth=2)
        except Exception as e:
            print(e)
        try:

            kappa = np.loadtxt('BTE.cumulative_kappaVsOmega_tensor')
            with fig("atc_freq.png"):
                pl.plot(kappa[:, 0], kappa[:, 1], label="${\kappa_{xx}}$")
                pl.plot(kappa[:, 0], kappa[:, 5], label="${\kappa_{xx}}$")
                pl.plot(kappa[:, 0], kappa[:, 9], label="${\kappa_{xx}}$")
                pl.xlabel("Frequency (THz)")
                pl.ylabel("Cumulative Thermal Conductivity(W/mK)")
            with fig("tc_freq.png"):
                pl.plot(
                    kappa[:, 0],
                    np.gradient(kappa[:, 1]),
                    label="${\kappa_{xx}}$")
                pl.plot(
                    kappa[:, 0],
                    np.gradient(kappa[:, 5]),
                    label="${\kappa_{xx}}$")
                pl.plot(
                    kappa[:, 0],
                    np.gradient(kappa[:, 9]),
                    label="${\kappa_{xx}}$")
                pl.xlabel("Frequency (THz)")
                pl.ylabel("Cumulative Thermal Conductivity(W/mK)")
        except Exception as e:
            print(e)

        try:
            g = np.loadtxt('../BTE.gruneisen')
            y = (g.flatten(), 'Gruneisen')
            plot(
                (omega.flatten(), 'Frequency (THz)'),
                y,
                'gruneisen_freq.png',
                grid=True,
                scatter=True)
            with fig('gruneisen_freq.png'):
                pl.scatter(
                    omega.flatten(), g.flatten(), marker='.', color='r', s=50)
                pl.xlabel('Frequency (THz)')
                pl.ylabel('Gruneisen Coeffecient')
                # pl.grid(True)
                pl.xlim([0, omega.max()])
                pl.ylim([-10, 5])
                # pl.tick_params(axis='both', which='major', labelsize=14)
            to_txt(['freq', 'gruneisen'],
                   np.c_[omega.flatten(), g.flatten()], 'gruneisen_freq.txt')
            g = np.loadtxt('../BTE.P3')

            with fig('p3_freq.png'):
                pl.scatter(
                    omega.flatten(),
                    g.flatten() * 1e6,
                    marker='.',
                    color='r',
                    s=50)
                pl.xlabel('Frequency (THz)')
                pl.ylabel('P3 $(\\times 10^{-6})$')
                # pl.grid(True)
                pl.xlim([0, omega.max()])
                pl.ylim([0, g.max() * 1e6])

            to_txt(['freq', 'p3'],
                   np.c_[omega.flatten(), g.flatten()], 'p3_freq.txt')
        except Exception as e:
            print(e)
        self.draw_gv()
        self.draw_branch_scatter()
        self.draw_tau()
        cd('..')
i = -1
for dT in range(0, 60, 10):
    i += 1
    p = np.loadtxt(str(i) + '/tempAve.txt', skiprows=1)
    data.append([p[:, 1], p[:, 3], 'dT=' + str(dT)])
    dataT = p[30, 3] - p[20, 3]
    j = (p[:, 4] * p[:, 2]).sum() / p[:, 2].sum()
    kapitza.append([dT, np.abs(j) / dataT])
kapitza = np.array(kapitza)
from aces.graph import series, plot, fig, pl
series(xlabel='x (Angstrom)',
       ylabel='Temperature (K)',
       datas=data,
       filename='profile.png')
with fig('kapitza.png'):
    x = kapitza[:, 0]
    y = kapitza[:, 1]
    pl.plot(x,
            y,
            marker='v',
            ms=12,
            mec='b',
            mfc='w',
            mfcalt="w",
            mew=1.5,
            linewidth=1)
    pl.xlabel('dT(K)')
    pl.ylabel('Kapitza Conductance (W/m2K)')
    pl.xlim([-5, 55])
#plot([kapitza[:,0],'dT(K)'],[kapitza[:,1],'Kapitza Conductance (W/m2K)'],'kapitza.png')