Пример #1
0
def get_mfcc_dtw(path_mapping):
    asim = acoustic_similarity_mapping(path_mapping,
                                       rep='mfcc',
                                       match_function='dtw',
                                       use_multi=True,
                                       num_cores=6)
    return asim
Пример #2
0
def calc_asim(path_mapping, rep, match_func, cache=None):
    asim, cache = acoustic_similarity_mapping(path_mapping,
                                              rep=rep,
                                              match_function=match_func,
                                              use_multi=True,
                                              num_cores=4,
                                              cache=cache,
                                              return_rep=True)
    return asim, cache
Пример #3
0
def get_mfcc_vowel_mid(path_mapping):

    asim = acoustic_similarity_mapping(path_mapping,
                                       rep='mfcc',
                                       match_function=midpoint_distance,
                                       use_multi=True,
                                       num_cores=6,
                                       call_back=callback)
    return asim
Пример #4
0
    def run(self):
        kwargs = self.kwargs
        self.results = list()
        if kwargs['type'] == 'one':
            try:
                asim = analyze_directory(kwargs['query'], **kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return
        elif kwargs['type'] == 'two':
            try:
                asim, output_val = acoustic_similarity_directories(
                    *kwargs['query'], **kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return

            #asim[(kwargs['query'][0],kwargs['query'][1])] = output_val
        elif kwargs['type'] == 'file':
            try:
                asim = acoustic_similarity_mapping(kwargs['query'], **kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return
        if self.stopped:
            return
        for k, v in asim.items():
            if self.stopped:
                return
            self.results.append(list(k) + [v])

        if kwargs['type'] == 'two':
            self.results.append([
                os.path.basename(kwargs['query'][0]),
                os.path.basename(kwargs['query'][1]), output_val
            ])
        else:
            self.results.append(['AVG', 'AVG', sum(asim.values()) / len(asim)])
        if self.stopped:
            self.finishedCancelling.emit()
            return
        self.dataReady.emit(self.results)
Пример #5
0
    def run(self):
        kwargs = self.kwargs
        self.results = list()
        if kwargs['type'] == 'one':
            try:
                asim = analyze_directory(kwargs['query'], **kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return
        elif kwargs['type'] == 'two':
            try:
                asim, output_val = acoustic_similarity_directories(*kwargs['query'],**kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return

            #asim[(kwargs['query'][0],kwargs['query'][1])] = output_val
        elif kwargs['type'] == 'file':
            try:
                asim = acoustic_similarity_mapping(kwargs['query'], **kwargs)
            except AcousticSimError as e:
                self.errorEncountered.emit(e)
                return
            except Exception as e:
                e = PCTPythonError(e)
                self.errorEncountered.emit(e)
                return
        if self.stopped:
            return
        for k,v in asim.items():
            if self.stopped:
                return
            self.results.append(list(k) + [v])

        if kwargs['type'] == 'two':
            self.results.append([os.path.basename(kwargs['query'][0]),os.path.basename(kwargs['query'][1]), output_val])
        else:
            self.results.append(['AVG', 'AVG',sum(asim.values())/len(asim)])
        if self.stopped:
            self.finishedCancelling.emit()
            return
        self.dataReady.emit(self.results)
    def analyze_config(self,config, use_aic = False, num_cores = 1):

        kwarg_dict = config.to_kwargs()
        kwarg_dict['num_cores'] = num_cores

        asim = acoustic_similarity_mapping(self.mapping, **kwarg_dict)

        if use_aic:
            with tempfile.NamedTemporaryFile(mode='w',delete=False) as f:
            #with open('temp.txt','w') as f:
                tempname = f.name
                #tempname = 'temp.txt'
                header = [x for x in self.listenerResp[0].keys() if x != 'axbtuple'] + ['Independent']
                writer = DictWriter(f,header,delimiter='\t')
                writer.writerow({x:x for x in header})
                for line in self.listenerResp:
                    try:
                        line.update({'Independent': asim[line['axbtuple']]})
                        writer.writerow({k:v for k,v in line.items() if k != 'axbtuple'})
                    except KeyError:
                        pass

            scriptname = os.path.join(os.path.dirname(os.path.abspath(__file__)),'get_aic.r')
            com = ['Rscript',scriptname,tempname]
            p = subprocess.Popen(com,stdout=subprocess.PIPE,stderr=subprocess.PIPE,stdin=subprocess.PIPE)
            stdout, stderr = p.communicate()
            if stderr:
                print(com)
                print(stderr)

                raise(ValueError)
            output = str(stdout.decode()).strip()
            if output == 'LmerError':
                print(com)
                raise(ValueError)
            aic = float(output)
            os.remove(tempname)
            return aic

        x = []
        y = []
        for k,v in asim.items():

            resps = array([int(l['Dependent']) for l in self.listenerResp if l['axbtuple'] == k])
            if len(resps) == 0:
                continue
            x.append(sum(resps)/len(resps))
            y.append(v)
        correlation = pearsonr(x,y)
        return correlation[0]
def calc_asim(path_mapping, rep, match_func, cache = None):
    asim, cache = acoustic_similarity_mapping(path_mapping, rep = rep,
                                    match_function = match_func, use_multi=True,
                                    num_cores = 4, cache = cache, return_rep = True)
    return asim, cache
def get_mfcc_vowel_mid(path_mapping):

    asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc',
                                    match_function = midpoint_distance, use_multi=True,
                                    num_cores = 6, call_back = callback)
    return asim
def get_mfcc_dtw(path_mapping):
    asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc',
                                    match_function = 'dtw', use_multi=True,
                                    num_cores = 6)
    return asim
    def analyze_config(self, config, use_aic=False, num_cores=1):

        kwarg_dict = config.to_kwargs()
        kwarg_dict['num_cores'] = num_cores

        asim = acoustic_similarity_mapping(self.mapping, **kwarg_dict)

        if use_aic:
            with tempfile.NamedTemporaryFile(mode='w', delete=False) as f:
                #with open('temp.txt','w') as f:
                tempname = f.name
                #tempname = 'temp.txt'
                header = [
                    x for x in self.listenerResp[0].keys() if x != 'axbtuple'
                ] + ['Independent']
                writer = DictWriter(f, header, delimiter='\t')
                writer.writerow({x: x for x in header})
                for line in self.listenerResp:
                    try:
                        line.update({'Independent': asim[line['axbtuple']]})
                        writer.writerow(
                            {k: v
                             for k, v in line.items() if k != 'axbtuple'})
                    except KeyError:
                        pass

            scriptname = os.path.join(
                os.path.dirname(os.path.abspath(__file__)), 'get_aic.r')
            com = ['Rscript', scriptname, tempname]
            p = subprocess.Popen(com,
                                 stdout=subprocess.PIPE,
                                 stderr=subprocess.PIPE,
                                 stdin=subprocess.PIPE)
            stdout, stderr = p.communicate()
            if stderr:
                print(com)
                print(stderr)

                raise (ValueError)
            output = str(stdout.decode()).strip()
            if output == 'LmerError':
                print(com)
                raise (ValueError)
            aic = float(output)
            os.remove(tempname)
            return aic

        x = []
        y = []
        for k, v in asim.items():

            resps = array([
                int(l['Dependent']) for l in self.listenerResp
                if l['axbtuple'] == k
            ])
            if len(resps) == 0:
                continue
            x.append(sum(resps) / len(resps))
            y.append(v)
        correlation = pearsonr(x, y)
        return correlation[0]