Пример #1
0
def bot_info(sub_bots, cfg):
    """Returns a description for this TweetCredReviewer

    :param sub_bots: a list of bot items used by this TweetCredReviewer
    :param cfg: config options
    :returns: a `TweetCredReviewer` item
    :rtype: dict
    """
    result = {
        '@context': ci_context,
        '@type': 'TweetCredReviewer',
        'additionalType': content.super_types('TweetCredReviewer'),
        'name': 'ESI Tweet Credibility Reviewer',
        'description':
        'Reviews the credibility of a tweet by reviewing the sentences in the tweet and the (textual) documents linked by the tweet',
        'author': bot_describer.esiLab_organization(),
        'dateCreated': '2020-04-02T18:00:00Z',
        'applicationCategory': ['Disinformation Detection'],
        'softwareRequirements': ['python', 'nltk', 'Cogito'],
        'softwareVersion': version,
        'executionEnvironment': bot_describer.inspect_execution_env(),
        'isBasedOn': sub_bots,
        'launchConfiguration': {},
        'taskConfiguration': {}
    }
    return {
        **result, 'identifier':
        hashu.hash_dict(dictu.select_keys(result, content.ident_keys(result)))
    }
Пример #2
0
def base_ArticleCredReview(cfg):
    return {
        '@context': content.ci_context,
        '@type': 'ArticleCredReview',
        'additionalType': content.super_types('ArticleCredReview'),
        'dateCreated': isodate.now_utc_timestamp(),
    }
Пример #3
0
def bot_info(sub_bots, cfg):
    """Returns a description for this AggQSentCredReviewer

    :param cfg: 
    :returns: 
    :rtype: 
    """
    result = {
        '@context': ci_context,
        '@type': 'AggQSentCredReviewer',
        'additionalType': content.super_types('AggQSentCredReviewer'),
        'name': 'ESI Aggregate Query Sentence Credibility Reviewer',
        'description':
        'Reviews the credibility of a query setence by comparing it to semantically similar sentences in the Co-inform DB and the credibility of those.',
        'author': bot_describer.esiLab_organization(),
        'dateCreated': '2020-03-19T15:09:00Z',
        'applicationCategory': ['Disinformation Detection'],
        'softwareRequirements': ['python'],
        'softwareVersion': version,
        'executionEnvironment': bot_describer.inspect_execution_env(),
        'isBasedOn': sub_bots,
        'launchConfiguration': {
            'acred_pred_claim_search_url':
            cfg.get('acred_pred_claim_search_url',
                    'http://localhost:8070/test/api/v1/claim/internal-search')
        }
    }
    return {
        **result, 'identifier':
        hashu.hash_dict(dictu.select_keys(result, content.ident_keys(result)))
    }
Пример #4
0
def bot_info(sub_bots, cfg):
    result = {
        '@context': ci_context,
        '@type': 'DBSentCredReviewer',
        'name': 'ESI DB Sentence Credibility Reviewer',
        'description': 'Estimates the credibility of a sentence in the Co-inform DB based on known ClaimReviews or websites where the sentence has been published.',
        'additionalType': content.super_types('DBSentCredReviewer'),
        'author': bot_describer.esiLab_organization(),
        'dateCreated': dateCreated,
        'softwareVersion': version,
        'url': 'http://coinform.eu/bot/DBSentCredReviewer/%s' % version,
        'applicationSuite': 'Co-inform',
        'isBasedOn': sub_bots, 
        'launchConfiguration': {
            'factchecker_website_to_qclaim_confidence_penalty_factor': float(
                cfg.get('factchecker_website_to_qclaim_confidence_penalty_factor', 0.5)),
            'acred_factchecker_urls': cfg.get('acred_factchecker_urls', [])
        }
    }
    ident = hashu.hash_dict(dictu.select_keys(
        result, content.ident_keys(result)))
    return {
        **result,
        'identifier': ident
    }
Пример #5
0
def from_old_DomainCredibility(dom_cred, cfg):
    """Converts a `DomainCredibility` into a `WebSiteCredReview`

    :param dom_cred: a `DomainCredibility` dict
    :param cfg: configuration options
    :returns: a `WebSiteCredReview`
    :rtype: dict
    """
    domain_url = dom_cred.get('itemReviewed', 'missing_website')  # str
    itemReviewed = content.str_as_website(domain_url)  # reconstruct WebSite

    ratingVal = dictu.get_in(dom_cred, ['credibility', 'value'], 0.0)
    explanation = 'based on %d review(s) by external rater(s)%s' % (len(
        dom_cred['assessments']), example_raters_markdown(dom_cred))
    return {
        '@context':
        'http://coinform.eu',
        '@type':
        'WebSiteCredReview',
        'additionalType':
        content.super_types('WebSiteCredReview'),
        'itemReviewed':
        itemReviewed,
        'text':
        'Site `%s` seems *%s* %s' %
        (itemReviewed.get('name', '??'),
         credlabel.describe_credval(ratingVal, None), explanation),
        'author':
        misinfoMeSourceCredReviewer(),
        'reviewRating': {
            '@type':
            'AggregateRating',
            'reviewAspect':
            'credibility',
            'ratingValue':
            ratingVal,
            'confidence':
            dictu.get_in(dom_cred, ['credibility', 'confidence'], 0.5),
            'ratingExplanation':
            explanation,
            'reviewCount':
            len(dom_cred['assessments']),
            'ratingCount':
            len(dom_cred['assessments'])
        },
        'dateCreated':
        dom_cred.get('dateCreated', isodate.now_utc_timestamp()),
        'reviewAspect':
        'credibility',
        'isBasedOn': [],  # TODO:
        'isBasedOn_assessments':
        dom_cred['assessments'],
        'timings':
        dom_cred.get('timings', {})
    }
Пример #6
0
def normalise(claimReview, cfg):
    if claimReview is None:
        return None
    assert content.is_claimReview(claimReview), "%s" % (claimReview)
    sub_ratings = normalised_claimReview_ratings(claimReview)
    most_confident = agg.select_most_confident_rating(sub_ratings)
    if most_confident is None:
        agg_rating = {
            '@type':
            'AggregateRating',
            'reviewAspect':
            'credibility',
            'reviewCount':
            1,  # the original claimReview
            'ratingCount':
            len(sub_ratings),
            'ratingValue':
            0.0,
            'confidence':
            0.0,
            'ratingExplanation':
            'Failed to interpret original [review](claimReview,get("url", "missing_url"))'
        }
    else:
        agg_rating = {
            **most_confident, '@type': 'AggregateRating',
            'reviewCount': 1,
            'ratingCount': len(sub_ratings)
        }
        assert type(agg_rating['confidence']) == float
        assert 'ratingExplanation' in agg_rating, '%s' % (most_confident)
    return {
        '@context':
        ci_context,
        '@type':
        'NormalisedClaimReview',
        'additionalType':
        content.super_types('NormalisedClaimReview'),
        'author':
        bot_info(cfg),
        'text':
        'Claim `%s` is *%s* %s' %
        (claimReview.get('claimReviewed'),
         credlabel.rating_label(agg_rating, cfg),
         agg_rating.get('ratingExplanation', '(missing explanation)')),
        'claimReviewed':
        claimReview.get('claimReviewed'),
        'dateCreated':
        isodate.now_utc_timestamp(),
        'isBasedOn': [claimReview] + sub_ratings,
        'reviewAspect':
        'credibility',
        'reviewRating':
        agg_rating
    }
Пример #7
0
def bot_info(sub_bots, cfg):
    """Returns a description for this ArticleCredReviewer

    :param sub_bots: bot items used by this ArticleCredReviewer
    :param cfg: config options
    :returns: an `ArticleCredReviewer`
    :rtype: dict
    """
    result = {
        '@context': content.ci_context,
        '@type': 'ArticleCredReviewer',
        'additionalType': content.super_types('ArticleCredReviewer'),
        'name': 'ESI Article Credibility Reviewer',
        'description':
        'Reviews the credibility of an article by (i) semantically analysing it to detect relevant claims (ii) getting credibility reviews for the claims and (iii) getting a credibility reviews for the site(s) that published the article.',
        'author': bot_describer.esiLab_organization(),
        'dateCreated': '2020-04-01T17:02:00Z',
        'applicationCategory': ['Disinformation Detection'],
        'softwareRequirements': ['python', 'Cogito'],
        'softwareVersion': version,
        'executionEnvironment': bot_describer.inspect_execution_env(),
        'isBasedOn': sub_bots,
        'launchConfiguration': {
            # any launch configs?
        },
        'taskConfiguration': {
            'cred_conf_threshold':
            cfg.get('cred_conf_threshold', 0.7),
            'max_claims_in_doc':
            int(cfg.get('max_claims_in_doc', 5)),
            'relsents_in_colls':
            cfg.get('relsents_in_colls', [
                'generic', 'pilot-se', 'pilot-gr', 'pilot-at', 'factcheckers',
                'fc-dev'
            ]),
            'target_url_collect_coll':
            cfg.get('target_url_collect_coll',
                    cfg.get('default_url_collect_coll', None)),
            'acred_review_format':
            cfg.get('acred_review_format', 'schema.org')
        }
    }
    return {
        **result, 'identifier':
        hashu.hash_dict(dictu.select_keys(result, content.ident_keys(result)))
    }
Пример #8
0
def bot_info(sub_bots, cfg):
    result = {
        '@context': ci_context,
        '@type': 'SentPolarityReviewer',
        'name': 'ESI Sentence Polarity Reviewer',
        'description': 'Estimates the polar similarity between two sentences',
        'additionalType': content.super_types('SentPolarityReviewer'),
        'softwareVersion': version,
        'dateCreated': '2020-03-27T22:54:00Z',
        'url':
        'http://coinform.eu/bot/SentencePolarSimilarityReviewer/%s' % version,
        'applicationSuite': 'Co-inform',
        'author': bot_describer.esiLab_organization(),
        'isBasedOn': sub_bots,
        'launchConfiguration': {}
    }
    ident = hashu.hash_dict(
        dictu.select_keys(result, content.ident_keys(result)))
    return {**result, 'identifier': ident}
Пример #9
0
def bot_info(cfg):
    result = {
        '@context': ci_context,
        '@type': 'ClaimReviewNormalizer',
        'name': 'ESI ClaimReview Credibility Normalizer',
        'description':
        'Analyses the alternateName and numerical rating value for a ClaimReview and tries to convert that into a normalised credibility rating',
        'additionalType': content.super_types('ClaimReviewNormalizer'),
        'author': bot_describer.esiLab_organization(),
        'dateCreated': dateCreated,
        'softwareVersion': version,
        'url': 'http://coinform.eu/bot/ClaimReviewNormalizer/%s' % version,
        'applicationSuite': 'Co-inform',
        'isBasedOn': [],  # no dependencies
        'launchConfiguration': {}  # no configs?
    }
    ident = hashu.hash_dict(
        dictu.select_keys(result, content.ident_keys(result)))
    return {**result, 'identifier': ident}
Пример #10
0
def misinfoMeSourceCredReviewer():
    result = {
        '@context':
        'http://coinform.eu',
        '@type':
        'MisinfoMeSourceCredReviewer',
        # Since we don't control this bot, we assume versions,
        #  an thus results, may change on a weekly basis
        #  So we use the start of the current week as the version
        'softwareVersion':
        isodate.start_of_week_utc_timestamp(datetime.datetime.utcnow()),
        'additionalType':
        content.super_types('MisinfoMeSourceCredReviewer'),
        'url':
        misinfome_url,
        'applicationSuite':
        'MisinfoMe'
    }
    return {
        **result, 'identifier':
        hashu.hash_dict(dictu.select_keys(result, content.ident_keys(result)))
    }
Пример #11
0
def bot_info(sub_bots, cfg):
    result = {
        '@context': ci_context,
        '@type': 'CredReviewer',
        'additionalType': content.super_types('CredReviewer'),
        'name': 'ESI Top-level Credibility Reviewer',
        'description': 'Reviews the credibility of various supported content items, mainly by delegating to the appropriate content-level reviewer',
        'author': bot_describer.esiLab_organization(),
        'dateCreated': '2020-04-02T18:05:00Z',
        'applicationCategory': ['Disinformation Detection'],
        'softwareRequirements': ['python'],
        'softwareVersion': version,
        'executionEnvironment': bot_describer.inspect_execution_env(),
        'isBasedOn': sub_bots,
        'launchConfiguration': {},
        'taskConfiguration': {}
    }
    return {
        **result,
        'identifier': hashu.hash_dict(dictu.select_keys(
            result,
            content.itemref_keys(result)
        ))}
Пример #12
0
def worthinesspreds_as_SentCheckWorthinessReview(mapped_pred, config):
    result = {
        "@context": ci_context,
        "@type": "SentCheckWorthinessReview",
        "additionalType": content.super_types('SentCheckWorthinessReview'),
        'reviewAspect': 'checkworthiness',
        'itemReviewed': content.as_sentence(mapped_pred['sentence']),
        'reviewRating': {
            '@type':
            'Rating',
            'reviewAspect':
            'checkworthiness',
            'ratingValue':
            mapped_pred['ratingValue'],
            'confidence':
            mapped_pred['confidence'],
            'ratingExplanation':
            rating_exp(mapped_pred['ratingValue'], mapped_pred['sentence'])
        },
        'dateCreated': isodate.now_utc_timestamp(),
        "author": checkWorthinessReviewer(config)
    }
    result['identifier'] = calc_worth_review_id(result)
    return result
Пример #13
0
def aggregate_subReviews(simple_sentSimReview, stanceReview, cfg):
    """Aggregates a similarity and stance review into a polar similarity review

    :param simple_sentSimReview: a (non-polar) `SentSimilarityReview`
      for a `sentPair`
    :param stanceReview: a `SentStanceReview` for the same `sentPair`
      as `simple_sentSimReview`
    :param cfg: configuration options
    :returns: a `SentPolarSimilarityReview`
    :rtype: dict
    """
    assert simple_sentSimReview is not None
    if stanceReview is None:
        return simple_sentSimReview
    sim = dictu.get_in(simple_sentSimReview, ['reviewRating', 'ratingValue'])
    sent_stance = dictu.get_in(stanceReview, ['reviewRating', 'ratingValue'],
                               'unrelated')
    stance_conf = dictu.get_in(stanceReview, ['reviewRating', 'confidence'],
                               '0.5')

    sent_pair = simple_sentSimReview['itemReviewed']
    assert stanceReview['itemReviewed'] == sent_pair, '%s != %s' % (
        stanceReview['itemReviewed'], sent_pair)

    agg_sim = calc_agg_polarsim(sim=sim,
                                sent_stance=sent_stance,
                                sent_stance_conf=stance_conf,
                                cfg=cfg)
    sub_reviews = [
        sr for sr in [simple_sentSimReview, stanceReview] if sr is not None
    ]
    sub_ratings = [
        srev.get('reviewRating') for srev in sub_reviews
        if srev.get('reviewRating') is not None
    ]
    headline = simlabel.claim_rel_str(sim, sent_stance)
    # TODO: more than an explanation this is the review body
    #  the explanation would be that one model said the sentences were x similar
    #  while another said they were (stance)
    explanation = 'Sentence `%s` %s `%s`' % (dictu.get_in(
        sent_pair, ['sentA', 'text'
                    ]), headline, dictu.get_in(sent_pair, ['sentB', 'text']))
    sub_bots = [
        simple_sentSimReview.get('author', {}),
        stanceReview.get('author', {})
    ]
    return {
        '@context': 'http://coinform.eu',
        '@type': 'SentPolarSimilarityReview',
        'additionalType': content.super_types('SentPolarSimilarityReview'),
        'itemReviewed': sent_pair,
        'headline': headline,
        'reviewAspect': 'polarSimilarity',
        'reviewBody': explanation,
        'reviewRating': {
            '@type': 'AggregateRating',
            'reviewAspect': 'polarSimilarity',
            'ratingValue': agg_sim,
            'confidence': stance_conf,
            'reviewCount': len(sub_reviews),
            'ratingCount': agg.total_ratingCount(sub_ratings),
            'ratingExplanation': explanation
        },
        'isBasedOn': sub_reviews,
        'dateCreated': isodate.now_utc_timestamp(),
        'author': bot_info(sub_bots, cfg)
    }
Пример #14
0
def aggregate_subReviews(db_Sentence, claimReview, webSiteCred, cfg):
    """Aggregates (claim and WebSite) reviews about a DB Sentence into a
       credibility review

    :param db_Sentence: a `Sentence` in the Co-inform database

    :param claimReview: a `ClaimReview` for the db_Sentence. May be
      None if no claim review is available for the sentence. In
      general, the claim review will not have been normalised
      (i.e. mapped onto the co-inform accuracy/credibility scales)

    :param webSiteCred: a `WebSiteCredReview` for a webSite where the
    `db_Sentence` was published.

    :param cfg: configuration options
    :returns: a `DBSentCredReview`
    :rtype: dict
    """
    nClaimReview = crn.normalise(claimReview, cfg)
    if nClaimReview is None:
        nClaimReview = {}

    nWebSiteRating = None
    if webSiteCred:
        nWebSiteRating = websiteCredRev_as_qclaimCredRating(webSiteCred, cfg)
        assert type(nWebSiteRating['confidence']) == float
        
    assert type(dictu.get_in(nClaimReview, ['reviewRating', 'confidence'], 0.0)) == float
    subRatings = [nWebSiteRating, nClaimReview.get('reviewRating', None)]
    subRatings = [r for r in subRatings if r is not None]
    sel_rating = agg.select_most_confident_rating(subRatings) or {
        'ratingValue': 0.0,
        'confidence': 0.0,
        'ratingExplanation': 'No website or claimReview associated with this sentence'
    }

    isBasedOn = [webSiteCred, nClaimReview]
    isBasedOn = [ibo for ibo in isBasedOn
                 if ibo is not None and ibo != {}]

    reviewCount = agg.total_reviewCount(subRatings) + len(isBasedOn)
    ratingCount = agg.total_ratingCount(subRatings)

    # should be a superset of [ibo.get('author') for ibo in isBasedOn]
    sub_bots = default_sub_bots(cfg)
    appears_in_docs = db_Sentence.get('appearance', [])
    appears_in_doc = appears_in_docs[0] if appears_in_docs else None
    link_to_doc = md_link_to_doc(appears_in_doc)
    revRating = {
        '@type': 'AggregateRating',
        'reviewAspect': 'credibility',
        'reviewCount': reviewCount,
        'ratingCount': ratingCount,
        'ratingValue': sel_rating.get('ratingValue', 0.0),
        'confidence': sel_rating.get('confidence', 0.0),
        'ratingExplanation': sel_rating.get('ratingExplanation')
    }
    return {
        '@context': "http://coinform.eu",
        '@type': "DBSentCredReview",
        'additionalType': content.super_types('DBSentCredReview'),
        'itemReviewed': db_Sentence,
        'text': 'Sentence `%s` %sseems *%s* %s' % (
            db_Sentence.get('text', '??'),
            ', in %s, ' % (link_to_doc) if link_to_doc else '',
            credlabel.rating_label(revRating, cfg),
            sel_rating.get('ratingExplanation')
        ),
        'reviewRating': revRating, 
        'reviewAspect': 'credibility',
        'isBasedOn': isBasedOn,
        'dateCreated': isodate.now_utc_timestamp(),
        'author': bot_info(sub_bots, cfg)
    }