def show_path(robot, path, scene, solution: Solution):
    fig2, ax2 = get_default_axes3d(
        xlim=[0, 1.5], ylim=[-0.75, 0.75], zlim=[-0.75, 0.75]
    )
    scene.plot(ax2, c="g")
    for pt in path:
        plot_reference_frame(ax2, pt.transformation_matrix, 0.1)

    if solution.success:
        robot.animate_path(fig2, ax2, solution.joint_path)
    else:
        print("Cannot show solution of a failed solver solution.")
Пример #2
0
def test_torch_model():

    fig, ax = get_default_axes3d([-0.10, 0.20], [0, 0.30], [-0.15, 0.15])
    plot_reference_frame(ax, torch.tf_tool_tip)
    torch.plot(ax, tf=np.eye(4), c="k")

    for tf in torch.tf_s:
        plot_reference_frame(ax, tf)
    plot_reference_frame(ax, torch.tf_tool_tip)
Пример #3
0
    def plot_kinematics(self, ax, q, *arg, **kwarg):
        # base frame (0)
        plot_reference_frame(ax, self.tf_base)

        # link frames (1-ndof)
        tf_links = self.fk_all_links(q)
        points = [tf[0:3, 3] for tf in tf_links]
        points = np.array(points)
        points = np.vstack((self.tf_base[0:3, 3], points))
        ax.plot(points[:, 0], points[:, 1], points[:, 2], "o-")
        for tfi in tf_links:
            plot_reference_frame(ax, tfi)

        # tool tip frame
        if self.tf_tool_tip is not None:
            tf_tt = np.dot(tf_links[-1], self.tf_tool_tip)
            plot_reference_frame(ax, tf_tt)
Пример #4
0
 def test_plot_reference_frame(self):
     _, ax = get_default_axes3d()
     plot_reference_frame(ax)
     plot_reference_frame(ax, tf=np.eye(4))
     plot_reference_frame(ax, tf=np.eye(4), arrow_length=0.3)
    start_pt = TolEulerPt(start, Quaternion(matrix=R_pt), pos_tol, rot_tol)
    return create_line(start_pt, stop, n_path)


def show_path(robot, path, scene, solution: Solution):
    fig2, ax2 = get_default_axes3d(
        xlim=[0, 1.5], ylim=[-0.75, 0.75], zlim=[-0.75, 0.75]
    )
    scene.plot(ax2, c="g")
    for pt in path:
        plot_reference_frame(ax2, pt.transformation_matrix, 0.1)

    if solution.success:
        robot.animate_path(fig2, ax2, solution.joint_path)
    else:
        print("Cannot show solution of a failed solver solution.")


if __name__ == "__main__":
    # show the planning setup
    robot = create_robot()
    scene, path_start, path_stop = create_scene(np.array([0.85, 0, 0]))
    path = create_path(path_start, path_stop, 20)

    _, ax = get_default_axes3d()
    robot.plot(ax, [0, 1.5, 0, 0, 0, 0], c="black")
    scene.plot(ax, c="green")
    for pt in path:
        plot_reference_frame(ax, tf=pt.transformation_matrix)
    plt.show()
Пример #6
0
R_pt = np.eye(4)
pos_tol = 3 * [NoTolerance()]
quat_tol = QuaternionTolerance(0.1)

pt_quat = TolQuatPt(np.zeros(3), Quaternion(matrix=R_pt), pos_tol, quat_tol)

# ==================================================================================
# Create plot and save it
# ==================================================================================
fig = plt.figure(figsize=plt.figaspect(1 / 3))
axes = [fig.add_subplot(1, 3, i, projection="3d") for i in [1, 2, 3]]

# all axis show the path point reference frame and have no coordinate axes
for pt, ax in zip([pt_pos, pt_eul, pt_quat], axes):
    ax.set_axis_off()
    plot_reference_frame(ax, tf=pt.transformation_matrix, arrow_length=0.2)

# here we plot the samples for each specific point
ax1, ax2, ax3 = axes[0], axes[1], axes[2]

plot_reference_frame(ax1, arrow_length=0.3)
for tf in pt_pos.sample_grid():
    ax1.scatter(tf[0, 3], tf[1, 3], tf[2, 3], "o", c="black")

for tf in pt_eul.sample_grid():
    plot_reference_frame(ax2, tf, arrow_length=0.1)

for tf in pt_quat.sample_incremental(50, SampleMethod.random_uniform):
    plot_reference_frame(ax3, tf, arrow_length=0.1)

# here we tweak the view a bit to make it look nice