Пример #1
0
def taskgraph_decision(options):
    """
    Run the decision task.  This function implements `mach taskgraph decision`,
    and is responsible for

     * processing decision task command-line options into parameters
     * running task-graph generation exactly the same way the other `mach
       taskgraph` commands do
     * generating a set of artifacts to memorialize the graph
     * calling TaskCluster APIs to create the graph
    """

    parameters = get_decision_parameters(options)
    # create a TaskGraphGenerator instance
    tgg = TaskGraphGenerator(
        root_dir=options['root'],
        parameters=parameters)

    # write out the parameters used to generate this graph
    write_artifact('parameters.yml', dict(**parameters))

    # write out the yml file for action tasks
    write_artifact('action.yml', get_action_yml(parameters))

    # write out the public/actions.json file
    write_artifact('actions.json', render_actions_json(parameters))

    # write out the full graph for reference
    full_task_json = tgg.full_task_graph.to_json()
    write_artifact('full-task-graph.json', full_task_json)

    # this is just a test to check whether the from_json() function is working
    _, _ = TaskGraph.from_json(full_task_json)

    # write out the target task set to allow reproducing this as input
    write_artifact('target-tasks.json', tgg.target_task_set.tasks.keys())

    # write out the optimized task graph to describe what will actually happen,
    # and the map of labels to taskids
    write_artifact('task-graph.json', tgg.optimized_task_graph.to_json())
    write_artifact('label-to-taskid.json', tgg.label_to_taskid)

    # actually create the graph
    create_tasks(tgg.optimized_task_graph, tgg.label_to_taskid, parameters)
Пример #2
0
def taskgraph_decision(options):
    """
    Run the decision task.  This function implements `mach taskgraph decision`,
    and is responsible for

     * processing decision task command-line options into parameters
     * running task-graph generation exactly the same way the other `mach
       taskgraph` commands do
     * generating a set of artifacts to memorialize the graph
     * calling TaskCluster APIs to create the graph
    """

    parameters = get_decision_parameters(options)
    # create a TaskGraphGenerator instance
    tgg = TaskGraphGenerator(
        root_dir=options['root'],
        parameters=parameters)

    # write out the parameters used to generate this graph
    write_artifact('parameters.yml', dict(**parameters))

    # write out the yml file for action tasks
    write_artifact('action.yml', get_action_yml(parameters))

    # write out the public/actions.json file
    write_artifact('actions.json', render_actions_json(parameters))

    # write out the full graph for reference
    full_task_json = tgg.full_task_graph.to_json()
    write_artifact('full-task-graph.json', full_task_json)

    # this is just a test to check whether the from_json() function is working
    _, _ = TaskGraph.from_json(full_task_json)

    # write out the target task set to allow reproducing this as input
    write_artifact('target-tasks.json', tgg.target_task_set.tasks.keys())

    # write out the optimized task graph to describe what will actually happen,
    # and the map of labels to taskids
    write_artifact('task-graph.json', tgg.morphed_task_graph.to_json())
    write_artifact('label-to-taskid.json', tgg.label_to_taskid)

    # actually create the graph
    create_tasks(tgg.morphed_task_graph, tgg.label_to_taskid, parameters)