Пример #1
0
def main():

    #### Create a response object
    response = Response()

    #### Create an ActionsParser object
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()

    #### Set a simple list of actions
    actions_list = [
        "filter(start_node=1, maximum_results=10, minimum_confidence=0.5)",
        "return(message=true,store=false)"
    ]

    #### Parse the action_list and print the result
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    actions = result.data['actions']

    #### Read message #2 from the database. This should be the acetaminophen proteins query result message
    sys.path.append(
        os.path.dirname(os.path.abspath(__file__)) + "/../../UI/Feedback")
    from RTXFeedback import RTXFeedback
    araxdb = RTXFeedback()
    message_dict = araxdb.getMessage(2)

    #### The stored message comes back as a dict. Transform it to objects
    from ARAX_messenger import ARAXMessenger
    message = ARAXMessenger().from_dict(message_dict)
    #print(json.dumps(ast.literal_eval(repr(message)),sort_keys=True,indent=2))

    #### Create a filter object and use it to apply action[0] from the list
    query_graph_info = QueryGraphInfo()
    result = query_graph_info.assess(message)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response

    query_graph_info_dict = {
        'n_nodes': query_graph_info.n_nodes,
        'n_edges': query_graph_info.n_edges,
        'is_bifurcated_graph': query_graph_info.is_bifurcated_graph,
        'start_node': query_graph_info.start_node,
        'node_info': query_graph_info.node_info,
        'edge_info': query_graph_info.edge_info,
        'node_order': query_graph_info.node_order,
        'edge_order': query_graph_info.edge_order,
        'node_type_map': query_graph_info.node_type_map,
        'edge_type_map': query_graph_info.edge_type_map,
    }
    print(
        json.dumps(ast.literal_eval(repr(query_graph_info_dict)),
                   sort_keys=True,
                   indent=2))
Пример #2
0
def main():

    #### Create a response object
    response = Response()

    #### Create an ActionsParser object
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()
 
    #### Set a simple list of actions
    actions_list = [
        "filter(start_node=1, maximum_results=10, minimum_confidence=0.5)",
        "return(message=true,store=false)"
    ]

    #### Parse the action_list and print the result
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    actions = result.data['actions']

    #### Read message #2 from the database. This should be the acetaminophen proteins query result message
    sys.path.append(os.path.dirname(os.path.abspath(__file__))+"/../../UI/Feedback")
    from RTXFeedback import RTXFeedback
    araxdb = RTXFeedback()
    message_dict = araxdb.getMessage(2)

    #### The stored message comes back as a dict. Transform it to objects
    sys.path.append(os.path.dirname(os.path.abspath(__file__))+"/../OpenAPI/python-flask-server/")
    from swagger_server.models.message import Message
    message = Message().from_dict(message_dict)

    #### Create a filter object and use it to apply action[0] from the list
    filter = ARAXFilter()
    result = filter.apply(message,actions[0]['parameters'])
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    response.data = result.data

    #### Show the final message
    print(response.show(level=Response.DEBUG))
    response.data['message_stats'] = { 'n_results': message.n_results, 'id': message.id,
        'reasoner_id': message.reasoner_id, 'tool_version': message.tool_version }
    print(json.dumps(ast.literal_eval(repr(response.data['parameters'])),sort_keys=True,indent=2))
    for result in message.results:
        if result.essence is not None:
            essence = result.essence
        else:
            essence = f"{len(result.node_bindings)} node bindings, {len(result.edge_bindings)} edge bindings"
        print(f" - {essence}")
    print(json.dumps(ast.literal_eval(repr(response.data['message_stats'])),sort_keys=True,indent=2))
Пример #3
0
def main():

    # Note that most of this is just manually doing what ARAXQuery() would normally do for you
    response = Response()
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()
    actions_list = [
        "create_message",
        "add_qnode(id=n00, curie=CHEMBL.COMPOUND:CHEMBL112)",  # acetaminophen
        "add_qnode(id=n01, type=protein, is_set=true)",
        "add_qedge(id=e00, source_id=n00, target_id=n01)",
        "expand(edge_id=e00, kp=BTE)",
        "return(message=true, store=false)",
    ]

    # Parse the raw action_list into commands and parameters
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    actions = result.data['actions']

    from ARAX_messenger import ARAXMessenger
    messenger = ARAXMessenger()
    expander = ARAXExpander()
    for action in actions:
        if action['command'] == 'create_message':
            result = messenger.create_message()
            message = result.data['message']
            response.data = result.data
        elif action['command'] == 'add_qnode':
            result = messenger.add_qnode(message, action['parameters'])
        elif action['command'] == 'add_qedge':
            result = messenger.add_qedge(message, action['parameters'])
        elif action['command'] == 'expand':
            result = expander.apply(message, action['parameters'])
        elif action['command'] == 'return':
            break
        else:
            response.error(f"Unrecognized command {action['command']}",
                           error_code="UnrecognizedCommand")
            print(response.show(level=Response.DEBUG))
            return response

        # Merge down this result and end if we're in an error state
        response.merge(result)
        if result.status != 'OK':
            print(response.show(level=Response.DEBUG))
            return response

    # Show the final response
    # print(json.dumps(ast.literal_eval(repr(message.knowledge_graph)),sort_keys=True,indent=2))
    print(response.show(level=Response.DEBUG))
Пример #4
0
def main():
    ### Note that most of this is just manually doing what ARAXQuery() would normally do for you

    #### Create a response object
    response = Response()

    #### Create an ActionsParser object
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()

    #### Set a simple list of actions
    # actions_list = [
    #    "overlay(compute_confidence_scores=true)",
    #    "return(message=true,store=false)"
    # ]

    actions_list = [
        #"filter_kg(action=remove_edges_by_type, edge_type=physically_interacts_with, remove_connected_nodes=false)",
        #"filter_kg(action=remove_edges_by_type, edge_type=physically_interacts_with, remove_connected_nodes=something)",
        #"filter(action=remove_nodes_by_type, node_type=protein)",
        #"overlay(action=compute_ngd)",
        #"filter(action=remove_edges_by_attribute, edge_attribute=ngd, threshold=.63, direction=below, remove_connected_nodes=t)",
        #"filter(action=remove_edges_by_attribute, edge_attribute=ngd, threshold=.6, remove_connected_nodes=False)",
        "filter(action=remove_orphaned_nodes)",
        "return(message=true,store=false)"
    ]

    #### Parse the action_list and print the result
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    actions = result.data['actions']

    #### Read message #2 from the database. This should be the acetaminophen proteins query result message
    sys.path.append(
        os.path.dirname(os.path.abspath(__file__)) + "/../../UI/Feedback")
    from RTXFeedback import RTXFeedback
    araxdb = RTXFeedback()

    #message_dict = araxdb.getMessage(2)  # acetaminophen2proteins graph
    # message_dict = araxdb.getMessage(13)  # ibuprofen -> proteins -> disease # work computer
    # message_dict = araxdb.getMessage(14)  # pleuropneumonia -> phenotypic_feature # work computer
    # message_dict = araxdb.getMessage(16)  # atherosclerosis -> phenotypic_feature  # work computer
    # message_dict = araxdb.getMessage(5)  # atherosclerosis -> phenotypic_feature  # home computer
    # message_dict = araxdb.getMessage(10)
    message_dict = araxdb.getMessage(40)

    #### The stored message comes back as a dict. Transform it to objects
    from ARAX_messenger import ARAXMessenger
    message = ARAXMessenger().from_dict(message_dict)
    # print(json.dumps(ast.literal_eval(repr(message)),sort_keys=True,indent=2))

    #### Create an overlay object and use it to apply action[0] from the list
    #filterkg = ARAXFilterKG()
    #result = filterkg.apply(message, actions[0]['parameters'])
    #response.merge(result)

    # Apply overlay so you get an edge attribute to work with, then apply the filter
    #from ARAX_overlay import ARAXOverlay
    #overlay = ARAXOverlay()
    #result = overlay.apply(message, actions[0]['parameters'])
    #response.merge(result)
    # then apply the filter
    filterkg = ARAXFilterKG()
    result = filterkg.apply(message, actions[0]['parameters'])
    response.merge(result)

    # if result.status != 'OK':
    #    print(response.show(level=Response.DEBUG))
    #    return response
    # response.data = result.data

    #### If successful, show the result
    # print(response.show(level=Response.DEBUG))
    # response.data['message_stats'] = { 'n_results': message.n_results, 'id': message.id,
    #    'reasoner_id': message.reasoner_id, 'tool_version': message.tool_version }
    # response.data['message_stats']['confidence_scores'] = []
    # for result in message.results:
    #    response.data['message_stats']['confidence_scores'].append(result.confidence)

    # print(json.dumps(ast.literal_eval(repr(response.data['parameters'])),sort_keys=True,indent=2))
    # print(json.dumps(ast.literal_eval(repr(response.data['message_stats'])),sort_keys=True,indent=2))
    # a comment on the end so you can better see the network on github

    # look at the response
    # print(response.show(level=Response.DEBUG))
    # print(response.show())
    # print("Still executed")

    # look at the edges
    # print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)),sort_keys=True,indent=2))
    # print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.nodes)), sort_keys=True, indent=2))
    # print(json.dumps(ast.literal_eval(repr(message)), sort_keys=True, indent=2))
    # print(response.show(level=Response.DEBUG))

    # just print off the values
    # print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)), sort_keys=True, indent=2))
    # for edge in message.knowledge_graph.edges:
    #    if hasattr(edge, 'edge_attributes') and edge.edge_attributes and len(edge.edge_attributes) >= 1:
    #        print(edge.edge_attributes.pop().value)
    print(
        json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)),
                   sort_keys=True,
                   indent=2))
    print(response.show(level=Response.DEBUG))
    vals = []
    for node in message.knowledge_graph.nodes:
        print(node.id)
    print(len(message.knowledge_graph.nodes))
    for edge in message.knowledge_graph.edges:
        if hasattr(edge, 'edge_attributes') and edge.edge_attributes and len(
                edge.edge_attributes) >= 1:
            vals.append(edge.edge_attributes.pop().value)
    print(sorted(vals))
Пример #5
0
    def processExternalPreviousMessageProcessingPlan(self, inputEnvelope):
        debug = 1
        if debug:
            eprint(
                "DEBUG: Entering processExternalPreviousMessageProcessingPlan")
        messages = []
        finalMessage = None
        finalMessage_id = None
        query = None

        #### Pull out the main processing plan envelope
        envelope = PreviousMessageProcessingPlan.from_dict(
            inputEnvelope["previous_message_processing_plan"])

        #### If there are URIs provided, try to load them
        if envelope.previous_message_uris is not None:
            if debug: eprint("DEBUG: Got previous_message_uris")
            for uri in envelope.previous_message_uris:
                if debug: eprint("DEBUG:   messageURI=" + uri)
                matchResult = re.match(
                    r'http[s]://arax.ncats.io/.*api/rtx/.+/message/(\d+)', uri,
                    re.M | re.I)
                if matchResult:
                    message_id = matchResult.group(1)
                    if debug:
                        eprint(
                            "DEBUG: Found local ARAX identifier corresponding to message_id "
                            + message_id)
                    if debug: eprint("DEBUG: Loading message_id " + message_id)
                    message = self.getMessage(message_id)
                    #eprint(type(message))
                    if not isinstance(message, tuple):
                        if debug:
                            eprint("DEBUG: Original question was: " +
                                   message["original_question"])
                        messages.append(message)
                        finalMessage_id = message_id
                        query = {
                            "query_type_id": message["query_type_id"],
                            "restated_question": message["restated_question"],
                            "terms": message["terms"]
                        }
                    else:
                        eprint("ERROR: Unable to load message_id " +
                               message_id)
                        return ({
                            "status":
                            404,
                            "title":
                            "Message not found",
                            "detail":
                            "There is no local message corresponding to message_id="
                            + str(message_id),
                            "type":
                            "about:blank"
                        }, 404)

        #### If there are one or more previous_messages embedded in the POST, process them
        if envelope.previous_messages is not None:
            if debug: eprint("DEBUG: Got previous_messages")
            for uploadedMessage in envelope.previous_messages:
                if debug:
                    eprint("DEBUG: uploadedMessage is a " +
                           str(uploadedMessage.__class__))
                if str(uploadedMessage.__class__
                       ) == "<class 'swagger_server.models.message.Message'>":
                    if uploadedMessage.results:
                        message = ast.literal_eval(repr(uploadedMessage))
                        messages.append(message)

                        if message["terms"] is None:
                            message["terms"] = {"dummyTerm": "giraffe"}
                        if message["query_type_id"] is None:
                            message["query_type_id"] = "UnknownQ"
                        if message["restated_question"] is None:
                            message["restated_question"] = "What is life?"
                        if message["original_question"] is None:
                            message["original_question"] = "what is life"

                        query = {
                            "query_type_id": message["query_type_id"],
                            "restated_question": message["restated_question"],
                            "original_question": message["original_question"],
                            "terms": message["terms"]
                        }
                    else:
                        eprint(
                            "Uploaded message does not contain a results. May be the wrong format"
                        )
                        return ({
                            "status": 404,
                            "title": "Bad uploaded Message",
                            "detail":
                            "There is no results in the uploaded Message object=",
                            "type": "about:blank"
                        }, 404)
                else:
                    eprint(
                        "Uploaded message is not of type Message. It is of type"
                        + str(uploadedMessage.__class__))
                    return ({
                        "status":
                        404,
                        "title":
                        "Bad uploaded Message",
                        "detail":
                        "Uploaded message is not of type Message. It is of type"
                        + str(uploadedMessage.__class__),
                        "type":
                        "about:blank"
                    }, 404)

        #### Take different actions based on the number of messages we now have in hand
        n_messages = len(messages)
        if n_messages == 0:
            return ({
                "status": 499,
                "title": "No Messages",
                "detail": "Did not get any useful Message objects",
                "type": "about:blank"
            }, 499)
        elif n_messages == 1:
            finalMessage = messages[0]
        else:
            finalMessage = TxMessage.from_dict(messages[0])
            counter = 1
            while counter < n_messages:
                messageToMerge = TxMessage.from_dict(messages[counter])
                if messageToMerge.reasoner_id is None:
                    messageToMerge.reasoner_id = "Unknown"
                if messageToMerge.reasoner_id != "ARAX":
                    messageToMerge = self.fix_message(
                        query, messageToMerge, messageToMerge.reasoner_id)

                finalMessage = self.merge_message(finalMessage, messageToMerge)
                counter += 1
            finalMessage = ast.literal_eval(repr(finalMessage))
            #return( { "status": 498, "title": "Multiple Messages", "detail": "I have multiple messages. Merging code awaits!", "type": "about:blank" }, 498)

        #### Examine the options that were provided and act accordingly
        optionsDict = {}
        if envelope.options:
            if debug: eprint("DEBUG: Got options")
            for option in envelope.options:
                if debug: eprint("DEBUG:   option=" + option)
                optionsDict[option] = 1

        #### If there are processing_actions, then fulfill those
        processing_actions = []
        if envelope.processing_actions:
            if debug: eprint("DEBUG: Found processing_actions")
            actions_parser = ActionsParser()
            result = actions_parser.parse(envelope.processing_actions)
            if result.error_code != 'OK':
                eprint(result)
                raise ()

            #### Message suffers from a dual life as a dict and an object. above we seem to treat it as a dict. Fix that. FIXME
            #### Below we start treating it as and object. This should be the way forward.
            #### This is not a good place to do this, but may need to convert here
            from ARAX_messenger import ARAXMessenger
            finalMessage = ARAXMessenger().from_dict(finalMessage)

            #### Process each action in order
            action_stats = {}
            actions = result.data['actions']
            for action in actions:
                if debug:
                    eprint(
                        f"DEBUG: Considering action '{action['command']}' with parameters {action['parameters']}"
                    )
                #### If we encounter a return, then this is the end of the line
                if action['command'] == 'return':
                    action_stats['return_action'] = action
                    break
                if action['command'] == 'filter':
                    filter = ARAXFilter()
                    result = filter.apply(finalMessage, action['parameters'])
                if result.error_code != 'OK':
                    response = result
                    break
                else:
                    if debug:
                        eprint(
                            f"DEBUG: Action '{action['command']}' is not known"
                        )

            #### At the end, process the explicit return() action, or implicitly perform one
            return_action = {
                'command': 'return',
                'parameters': {
                    'message': 'false',
                    'store': 'false'
                }
            }
            if action is not None and action['command'] == 'return':
                return_action = action
                #### If an explicit one left out some parameters, set the defaults
                if 'store' not in return_action['parameters']:
                    return_action['parameters']['store'] == 'false'
                if 'message' not in return_action['parameters']:
                    return_action['parameters']['message'] == 'false'

        #if "AnnotateDrugs" in optionsDict:
        #  if debug: eprint("DEBUG: Annotating drugs")
        #  annotate_std_results(finalMessage)

        if return_action['parameters']['store'] == 'true':
            if debug: eprint("DEBUG: Storing resulting Message")
            finalMessage_id = self.addNewMessage(
                TxMessage.from_dict(finalMessage), query)

        #### If requesting a full redirect to the resulting message display. This doesn't really work I don't think
        #if "RedirectToMessage" in optionsDict:
        #  #redirect("https://arax.ncats.io/api/rtx/v1/message/"+str(finalMessage_id), code=302)
        #  #return( { "status": 302, "redirect": "https://arax.ncats.io/api/rtx/v1/message/"+str(finalMessage_id) }, 302)
        #  return( "Location: https://arax.ncats.io/api/rtx/v1/message/"+str(finalMessage_id), 302)

        #### If asking for the full message back
        if return_action['parameters']['message'] == 'true':
            return (finalMessage)

        #### Else just the id is returned
        else:
            #return( { "status": 200, "message_id": str(finalMessage_id), "n_results": finalMessage['n_results'], "url": "https://arax.ncats.io/api/rtx/v1/message/"+str(finalMessage_id) }, 200)
            return ({
                "status":
                200,
                "message_id":
                str(finalMessage_id),
                "n_results":
                finalMessage.n_results,
                "url":
                "https://arax.ncats.io/api/rtx/v1/message/" +
                str(finalMessage_id)
            }, 200)
Пример #6
0
def main():
    print("start ARAX_overlay")
    #### Note that most of this is just manually doing what ARAXQuery() would normally do for you

    #### Create a response object
    response = Response()

    #### Create an ActionsParser object
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()

    #### Set a simple list of actions
    #actions_list = [
    #    "overlay(compute_confidence_scores=true)",
    #    "return(message=true,store=false)"
    #]

    actions_list = [
        #"overlay(action=compute_ngd)",
        #"overlay(action=compute_ngd, virtual_edge_type=NGD1, source_qnode_id=n00, target_qnode_id=n01)",
        #"overlay(action=overlay_clinical_info, paired_concept_frequency=true)",
        # "overlay(action=overlay_clinical_info, paired_concept_frequency=true, virtual_edge_type=P1, source_qnode_id=n00, target_qnode_id=n01)",
        #"overlay(action=compute_jaccard, start_node_id=n00, intermediate_node_id=n01, end_node_id=n02, virtual_edge_type=J1)",
        #"overlay(action=add_node_pmids)",
        #"overlay(action=overlay_clinical_info, observed_expected_ratio=true)",
        #"overlay(action=overlay_clinical_info, paired_concept_frequency=true, virtual_edge_type=P1, source_qnode_id=n00, target_qnode_id=n01)",
        "overlay(action=predict_drug_treats_disease, source_qnode_id=n01, target_qnode_id=n00, virtual_edge_type=P1)",
        "return(message=true,store=false)"
    ]

    #### Parse the action_list and print the result
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=Response.DEBUG))
        return response
    actions = result.data['actions']

    #### Read message #2 from the database. This should be the acetaminophen proteins query result message
    sys.path.append(
        os.path.dirname(os.path.abspath(__file__)) + "/../../UI/Feedback")
    from RTXFeedback import RTXFeedback
    araxdb = RTXFeedback()

    #message_dict = araxdb.getMessage(2)  # acetaminophen2proteins graph
    # message_dict = araxdb.getMessage(13)  # ibuprofen -> proteins -> disease # work computer
    #message_dict = araxdb.getMessage(14)  # pleuropneumonia -> phenotypic_feature # work computer
    #message_dict = araxdb.getMessage(16)  # atherosclerosis -> phenotypic_feature  # work computer
    #message_dict = araxdb.getMessage(5)  # atherosclerosis -> phenotypic_feature  # home computer
    #message_dict = araxdb.getMessage(10)
    #message_dict = araxdb.getMessage(36)  # test COHD obs/exp, via ARAX_query.py 16
    #message_dict = araxdb.getMessage(39)  # ngd virtual edge test
    message_dict = araxdb.getMessage(1)

    #### The stored message comes back as a dict. Transform it to objects
    from ARAX_messenger import ARAXMessenger
    message = ARAXMessenger().from_dict(message_dict)
    #print(json.dumps(ast.literal_eval(repr(message)),sort_keys=True,indent=2))

    #### Create an overlay object and use it to apply action[0] from the list
    print("Applying action")
    overlay = ARAXOverlay()
    result = overlay.apply(message, actions[0]['parameters'])
    response.merge(result)
    print("Finished applying action")

    #if result.status != 'OK':
    #    print(response.show(level=Response.DEBUG))
    #    return response
    #response.data = result.data

    #### If successful, show the result
    #print(response.show(level=Response.DEBUG))
    #response.data['message_stats'] = { 'n_results': message.n_results, 'id': message.id,
    #    'reasoner_id': message.reasoner_id, 'tool_version': message.tool_version }
    #response.data['message_stats']['confidence_scores'] = []
    #for result in message.results:
    #    response.data['message_stats']['confidence_scores'].append(result.confidence)

    #print(json.dumps(ast.literal_eval(repr(response.data['parameters'])),sort_keys=True,indent=2))
    #print(json.dumps(ast.literal_eval(repr(response.data['message_stats'])),sort_keys=True,indent=2))
    # a comment on the end so you can better see the network on github

    # look at the response
    #print(response.show(level=Response.DEBUG))
    #print(response.show())
    #print("Still executed")

    # look at the edges
    #print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)),sort_keys=True,indent=2))
    #print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.nodes)), sort_keys=True, indent=2))
    #print(json.dumps(ast.literal_eval(repr(message)), sort_keys=True, indent=2))
    #print(response.show(level=Response.DEBUG))

    # just print off the values
    #print(json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)), sort_keys=True, indent=2))
    #for edge in message.knowledge_graph.edges:
    #    if hasattr(edge, 'edge_attributes') and edge.edge_attributes and len(edge.edge_attributes) >= 1:
    #        print(edge.edge_attributes.pop().value)
    #print(f"Message: {json.dumps(ast.literal_eval(repr(message)), sort_keys=True, indent=2)}")
    #print(message)
    print(
        f"KG edges: {json.dumps(ast.literal_eval(repr(message.knowledge_graph.edges)), sort_keys=True, indent=2)}"
    )
    #print(response.show(level=Response.DEBUG))
    print("Yet you still got here")
Пример #7
0
def main():

    #### Create a response object
    response = ARAXResponse()

    #### Create an ActionsParser object
    from actions_parser import ActionsParser
    actions_parser = ActionsParser()

    #### Set a simple list of actions
    actions_list = [
        "filter(start_node=1, maximum_results=10, minimum_confidence=0.5)",
        "return(message=true,store=false)"
    ]

    #### Parse the action_list and print the result
    result = actions_parser.parse(actions_list)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=ARAXResponse.DEBUG))
        return response
    actions = result.data['actions']

    #### Read message #2 from the database. This should be the acetaminophen proteins query result message
    sys.path.append(
        os.path.dirname(os.path.abspath(__file__)) + "/../../UI/Feedback")
    from RTXFeedback import RTXFeedback
    araxdb = RTXFeedback()
    message_dict = araxdb.getMessage(2)

    #### The stored message comes back as a dict. Transform it to objects
    from ARAX_messenger import ARAXMessenger
    message = ARAXMessenger().from_dict(message_dict)

    #### Asses some information about the QueryGraph
    query_graph_info = QueryGraphInfo()
    result = query_graph_info.assess(message)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=ARAXResponse.DEBUG))
        return response
    #print(json.dumps(ast.literal_eval(repr(query_graph_info.node_order)),sort_keys=True,indent=2))

    #### Assess some information about the KnowledgeGraph
    knowledge_graph_info = KnowledgeGraphInfo()
    result = knowledge_graph_info.check_for_query_graph_tags(
        message, query_graph_info)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=ARAXResponse.DEBUG))
        return response

    #### Try to add query_graph_ids to the KnowledgeGraph
    result = knowledge_graph_info.add_query_graph_tags(message,
                                                       query_graph_info)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=ARAXResponse.DEBUG))
        return response

    #### Reassess some information about the KnowledgeGraph
    result = knowledge_graph_info.check_for_query_graph_tags(
        message, query_graph_info)
    response.merge(result)
    if result.status != 'OK':
        print(response.show(level=ARAXResponse.DEBUG))
        return response

    print(response.show(level=ARAXResponse.DEBUG))

    tmp = {
        'query_graph_id_node_status':
        knowledge_graph_info.query_graph_id_node_status,
        'query_graph_id_edge_status':
        knowledge_graph_info.query_graph_id_edge_status,
        'n_nodes': knowledge_graph_info.n_nodes,
        'n_edges': knowledge_graph_info.n_edges
    }
    #print(json.dumps(message.to_dict(),sort_keys=True,indent=2))
    print(json.dumps(ast.literal_eval(repr(tmp)), sort_keys=True, indent=2))