Пример #1
0
def _forward(z: np.array, W: np.array, b: np.array,
             activation: str) -> np.array:
    """Propagate the signal from the previous to the next layer."""
    a = np.dot(z, W) + b
    if activation == 'sigmoid':
        return sigmoid(a)
    elif activation == 'identity':
        return identity(a)
Пример #2
0
def forword(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, W1) + b1
    z1 = activation.sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    z2 = activation.sigmoid(a2)
    a3 = np.dot(z2, W3) + b3
    y = activation.identity(a3)

    return y
Пример #3
0
#入力
X = np.array([1.0, 0.5])
#一層の重み
W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
#一層のバイアス
B1 = np.array([0.1, 0.2, 0.3])
#一層のの重み付き和
A1 = np.dot(X, W1) + B1
#活性化関数で変換
Z1 = activation.sigmoid(A1)

#二層の重み
W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
#二層のバイアス
B2 = np.array([0.1, 0.2])
#二層の重み付き和
A2 = np.dot(Z1, W2) + B2
#活性化関数で変換
Z2 = activation.sigmoid(A2)

#三層の重み
W3 = np.array([[0.1, 0.3], [0.2, 0.4]])
#三層のバイアス
B3 = np.array([0.1, 0.2])
#三層の重み付き和
A3 = np.dot(Z2, W3) + B3
#活性化関数で変換
Y = activation.identity(A3)

print(Y)
Пример #4
0
    def test_identity_deriv():
        """Test identity activation function derivative"""

        x = np.array([[0, 1, 3], [-1, 0, -5], [1, 0, 3], [10, -9, -7]])

        assert np.array_equal(identity(x, deriv=True), np.ones([4, 3]))
Пример #5
0
    def test_identity():
        """Test identity activation function"""

        x = np.array([[0, 1, 3], [-1, 0, -5], [1, 0, 3], [10, -9, -7]])

        assert np.array_equal(identity(x), x)