def test_sigma(self):
        self.assertAlmostEqual(Sigmoid.activation(0), 0.5, places=2)
        self.assertAlmostEqual(Sigmoid.activation(50), 1, places=2)
        self.assertAlmostEqual(Sigmoid.activation(-50), 0, places=2)

        self.assertAlmostEqual(Sigmoid.activation(1), 0.731, places=2)
        self.assertAlmostEqual(Sigmoid.activation(-1), 0.2689, places=2)
    def test_sigma_prime(self):
        self.assertAlmostEqual(Sigmoid.gradient(0), 0.25, places=3)
        self.assertAlmostEqual(Sigmoid.gradient(-50), 0, places=3)
        self.assertAlmostEqual(Sigmoid.gradient(50), 0, places=3)

        self.assertAlmostEqual(Sigmoid.gradient(50),
                               Sigmoid.activation(50) *
                               (1 - Sigmoid.activation(50)),
                               places=3)
Пример #3
0
    def test_get_final_layer_error_for_1_element_vectors(self):
        cross_entropy = cost_functions.CrossEntropyCost(self.net)
        z_last = np.array([3], float)
        z_last_prime = Sigmoid.gradient(z_last)

        y = np.array([0], float)
        a_last = Sigmoid.activation(z_last)
        nabla = cross_entropy.get_final_layer_error(a_last, y, z_last_prime)
        self.assertAlmostEqual(nabla[0], (a_last - y), places=2)

        z_last = np.array([-1], float)
        z_last_prime = Rectifier.gradient(z_last)
        y = np.array([0.5], float)
        a_last = Sigmoid.activation(z_last)
        nabla = cross_entropy.get_final_layer_error(a_last, y, z_last_prime)
        self.assertAlmostEqual(nabla[0], (a_last - y), places=2)
    def test_get_final_layer_error_for_arrays(self):
        quadratic = cost_functions.QuadraticCost(neural_net=self.net)

        z_last = np.array([3, -1], float)
        z_last_prime = Sigmoid.gradient(z_last)
        y = np.array([0, 0.5], float)
        a_last = Sigmoid.activation(z_last)
        nabla = quadratic.get_final_layer_error(a_last, y, z_last_prime)

        self.assertAlmostEqual(nabla[0], (a_last[0] - y[0]) * z_last_prime[0], places=2)
        self.assertAlmostEqual(nabla[1], (a_last[1] - y[1]) * Sigmoid.gradient(z_last[1]),
                               places=2)