smooth_penalty=smooth_penalty, chunk_length=chunk_length) multi_shoot.prepare_intermediate( input_tensor ) # create model optimizer = AdaBelief(filter(lambda p: p.requires_grad, multi_shoot.parameters()), lr = lr, eps=1e-16, rectify=False, betas=(0.5, 0.9)) #optimizer = Adam(filter(lambda p: p.requires_grad, multi_shoot.parameters()), lr=lr, eps=1e-16, # betas=(0.5, 0.9)) best_loss = np.inf for _epoch in range(N_epoch): # adjust learning rate for param_group in optimizer.param_groups: param_group['lr'] *= gamma optimizer.zero_grad() # forward and optimizer prediction_chunks, data_chunks = multi_shoot.fit_and_grad( input_tensor, time_points ) loss = multi_shoot.get_loss( prediction_chunks, data_chunks ) loss.backward(retain_graph=False) optimizer.step() print( 'Epoch {} Alpha {}, Beta {}, Gamma {}, Delta {}'.format(_epoch,dcmfunc.alpha, dcmfunc.beta, dcmfunc.gamma, dcmfunc.delta)) if loss.item()<best_loss: # concatenate by time, and plot prediction2, data2 = [], [] for prediction, data in zip(prediction_chunks, data_chunks): if data.shape[0] > 1:
def memo_valor(env_fn, model=MEMO, memo_kwargs=dict(), annealing_kwargs=dict(), seed=0, episodes_per_expert=40, epochs=50, # warmup=10, train_iters=5, step_size=5, memo_lr=1e-3, train_batch_size=50, eval_batch_size=200, max_ep_len=1000, logger_kwargs=dict(), config_name='standard', save_freq=10, # replay_buffers=[], memories=[]): # W&B Logging wandb.login() composite_name = 'E ' + str(epochs) + ' B ' + str(train_batch_size) + ' ENC ' + \ str(memo_kwargs['encoder_hidden']) + 'DEC ' + str(memo_kwargs['decoder_hidden']) wandb.init(project="MEMO", group='Epochs: ' + str(epochs), name=composite_name, config=locals()) assert memories != [], "No examples found! Replay/memory buffers must be set to proceed." # Special function to avoid certain slowdowns from PyTorch + MPI combo. setup_pytorch_for_mpi() # Set up logger and save configuration logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) seed += 10000 * proc_id() torch.manual_seed(seed) np.random.seed(seed) # Instantiate environment env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Model # Create discriminator and monitor it con_dim = len(memories) memo = model(obs_dim=obs_dim[0], out_dim=act_dim[0], **memo_kwargs) # Set up model saving logger.setup_pytorch_saver([memo]) # Sync params across processes sync_params(memo) N_expert = episodes_per_expert*max_ep_len print("N Expert: ", N_expert) # Buffer # local_episodes_per_epoch = int(episodes_per_epoch / num_procs()) local_iter_per_epoch = int(train_iters / num_procs()) # Count variables var_counts = tuple(count_vars(module) for module in [memo]) logger.log('\nNumber of parameters: \t d: %d\n' % var_counts) # Optimizers # memo_optimizer = AdaBelief(memo.parameters(), lr=memo_lr, eps=1e-20, rectify=True) memo_optimizer = AdaBelief(memo.parameters(), lr=memo_lr, eps=1e-16, rectify=True) # memo_optimizer = Adam(memo.parameters(), lr=memo_lr, betas=(0.9, 0.98), eps=1e-9) start_time = time.time() # Prepare data mem = MemoryBatch(memories, step=step_size) # transition_states, pure_states, transition_actions, expert_ids = mem.collate() transition_states, pure_states, transition_actions, expert_ids = mem.collate() total_l_old, recon_l_old, context_l_old = 0, 0, 0 # Main Loop kl_beta_schedule = frange_cycle_sigmoid(epochs, **annealing_kwargs) for epoch in range(epochs): memo.train() # Select state transitions and actions at random indexes batch_indexes = torch.randint(len(transition_states), (train_batch_size,)) raw_states_batch, delta_states_batch, actions_batch, sampled_experts = \ pure_states[batch_indexes], transition_states[batch_indexes], transition_actions[batch_indexes], expert_ids[batch_indexes] for i in range(local_iter_per_epoch): # kl_beta = kl_beta_schedule[epoch] kl_beta = 1 # only take context labeling into account for first label loss, recon_loss, X, latent_labels, vq_loss = memo(raw_states_batch, delta_states_batch, actions_batch, kl_beta) memo_optimizer.zero_grad() loss.mean().backward() mpi_avg_grads(memo) memo_optimizer.step() # scheduler.step(loss.mean().data.item()) total_l_new, recon_l_new, vq_l_new = loss.mean().data.item(), recon_loss.mean().data.item(), vq_loss.mean().data.item() memo_metrics = {'MEMO Loss': total_l_new, 'Recon Loss': recon_l_new, "VQ Labeling Loss": vq_l_new, "KL Beta": kl_beta_schedule[epoch]} wandb.log(memo_metrics) logger.store(TotalLoss=total_l_new, PolicyLoss=recon_l_new, # ContextLoss=context_l_new, DeltaTotalLoss=total_l_new-total_l_old, DeltaPolicyLoss=recon_l_new-recon_l_old, ) total_l_old, recon_l_old = total_l_new, recon_l_new # , context_l_new if (epoch % save_freq == 0) or (epoch == epochs - 1): logger.save_state({'env': env}, [memo], None) # Log logger.log_tabular('Epoch', epoch) logger.log_tabular('EpochBatchSize', train_batch_size) logger.log_tabular('TotalLoss', average_only=True) logger.log_tabular('PolicyLoss', average_only=True) logger.log_tabular('Time', time.time() - start_time) logger.dump_tabular() print("Finished training, and detected %d contexts!" % len(memo.found_contexts)) # wandb.finish() print('memo type', memo) return memo, mem
def train_mlp(args): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') assert args.cae_weight, "No trained cae weight" cae = CAE().to(device) cae.eval() cae.load_state_dict(torch.load(args.cae_weight)) print('a') train_dataset = PathDataSet(S2D_data_path, cae.encoder) val_dataset = PathDataSet(S2D_data_path, cae.encoder, is_val=True) print('b') train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) now = datetime.now() output_folder = args.output_folder + '/' + now.strftime( '%Y-%m-%d_%H-%M-%S') check_and_create_dir(output_folder) model = MLP(args.input_size, args.output_size).to(device) if args.load_weights: print("Load weight from {}".format(args.load_weights)) model.load_state_dict(torch.load(args.load_weights)) criterion = nn.MSELoss() # optimizer = torch.optim.Adagrad(model.parameters()) optimizer = AdaBelief(model.parameters(), lr=1e-4, eps=1e-10, betas=(0.9, 0.999), weight_decouple=True, rectify=False) for epoch in range(args.max_epoch): model.train() for i, data in enumerate(tqdm(train_loader)): # get data input_data = data[0].to(device) # B, 32 next_config = data[1].to(device) # B, 2 # predict predict_config = model(input_data) # get loss loss = criterion(predict_config, next_config) # backpropagation optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() neptune.log_metric("batch_loss", loss.item()) print('\ncalculate validation accuracy..') model.eval() with torch.no_grad(): losses = [] for i, data in enumerate(tqdm(val_loader)): # get data input_data = data[0].to(device) # B, 32 next_config = data[1].to(device) # B, 2 # predict predict_config = model(input_data) # get loss loss = criterion(predict_config, next_config) losses.append(loss.item()) val_loss = np.mean(losses) neptune.log_metric("val_loss", val_loss) print("validation result, epoch {}: {}".format(epoch, val_loss)) if epoch % 5 == 0: torch.save(model.state_dict(), '{}/epoch_{}.tar'.format(output_folder, epoch))
def train(hyp, opt, device, tb_writer=None, wandb=None): logger.info(f'Hyperparameters {hyp}') log_dir = Path(tb_writer.log_dir) if tb_writer else Path( opt.logdir) / 'evolve' # logging directory wdir = log_dir / 'weights' # weights directory os.makedirs(wdir, exist_ok=True) last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = str(log_dir / 'results.txt') epochs, batch_size, total_batch_size, weights, rank = \ opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Save run settings with open(log_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(log_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] nc, names = (1, ['item']) if opt.single_cls else (int( data_dict['nc']), data_dict['names']) # number classes, names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % ( len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint if hyp.get('anchors'): ckpt['model'].yaml['anchors'] = round( hyp['anchors']) # force autoanchor model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [ ] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info( 'Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc).to(device) # create # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = AdaBelief(model.parameters(), lr=1e-4, eps=1e-16, betas=(0.9, 0.999), weight_decouple=True, rectify=True) else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) # optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay # optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[ 'lrf']) + hyp['lrf'] # cosine scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # Logging if wandb and wandb.run is None: id = ckpt.get('wandb_id') if 'ckpt' in locals() else None wandb_run = wandb.init(config=opt, resume="allow", project="YOLOv5", name=os.path.basename(log_dir), id=id) # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # Results if ckpt.get('training_results') is not None: with open(results_file, 'w') as file: file.write(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % ( weights, epochs) shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}' ) # save previous weights if epochs < start_epoch: logger.info( '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = int(max(model.stride)) # grid size (max stride) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size ] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Exponential moving average ema = ModelEMA(model) if rank in [-1, 0] else None # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank) # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % ( mlc, nc, opt.data, nc - 1) # Process 0 if rank in [-1, 0]: ema.updates = start_epoch * nb // accumulate # set EMA updates testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) plot_labels(labels, save_dir=log_dir) if tb_writer: # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384 tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # Model parameters hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to( device) # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) logger.info('Image sizes %g train, %g test\n' 'Using %g dataloader workers\nLogging results to %s\n' 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs)) for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices( range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info( ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device), model) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if ni < 3: f = str(log_dir / f'train_batch{ni}.jpg') # filename result = plot_images(images=imgs, targets=targets, paths=paths, fname=f) # if tb_writer and result is not None: # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(model, imgs) # add model to tensorboard # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP if ema: ema.update_attr( model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP results, maps, times = test.test( opt.data, batch_size=total_batch_size, imgsz=imgsz_test, model=ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=log_dir, plots=epoch == 0 or final_epoch, # plot first and last log_imgs=opt.log_imgs) # Write with open(results_file, 'a') as f: f.write( s + '%10.4g' * 7 % results + '\n') # P, R, [email protected], [email protected], val_loss(box, obj, cls) if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Log tags = [ 'train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2' ] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if tb_writer: tb_writer.add_scalar(tag, x, epoch) # tensorboard if wandb: wandb.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape( 1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi # Save model save = (not opt.nosave) or (final_epoch and not opt.evolve) if save: with open(results_file, 'r') as f: # create checkpoint ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'training_results': f.read(), 'model': ema.ema, 'optimizer': None if final_epoch else optimizer.state_dict(), 'wandb_id': wandb_run.id if wandb else None } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Strip optimizers n = opt.name if opt.name.isnumeric() else '' fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt' for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]): if os.path.exists(f1): os.rename(f1, f2) # rename if str(f2).endswith('.pt'): # is *.pt strip_optimizer(f2) # strip optimizer os.system( 'gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload # Finish if not opt.evolve: plot_results(save_dir=log_dir) # save as results.png logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) dist.destroy_process_group() if rank not in [-1, 0] else None torch.cuda.empty_cache() return results
def main(): """Model training.""" train_speakers, valid_speakers = get_valid_speakers() # define transforms for train & validation samples train_transform = Compose([Resize(760, 80), ToTensor()]) # define datasets & loaders train_dataset = TrainDataset('train', train_speakers, transform=train_transform) valid_dataset = TrainDataset('train', valid_speakers, transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) valid_loader = DataLoader(valid_dataset, batch_size=256, shuffle=False) device = get_device() print(f'Selected device: {device}') model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True) model.classifier = nn.Linear(in_features=1280, out_features=1, bias=True) net = model net.to(device) criterion = nn.BCEWithLogitsLoss() optimizer = AdaBelief(net.parameters(), lr=1e-3) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=3, eps=1e-4, verbose=True) # prepare valid target yvalid = get_valid_targets(valid_dataset) # training loop for epoch in range(10): loss_log = {'train': [], 'valid': []} train_loss = [] net.train() for x, y in tqdm(train_loader): x, y = mixup(x, y, alpha=0.2) x, y = x.to(device), y.to(device, dtype=torch.float32) optimizer.zero_grad() outputs = net(x) loss = criterion(outputs, y.unsqueeze(1)) loss.backward() optimizer.step() # save loss train_loss.append(loss.item()) # evaluate net.eval() valid_pred = torch.Tensor([]).to(device) for x, y in valid_loader: with torch.no_grad(): x, y = x.to(device), y.to(device, dtype=torch.float32) ypred = net(x) valid_pred = torch.cat([valid_pred, ypred], 0) valid_pred = sigmoid(valid_pred.cpu().numpy()) val_loss = log_loss(yvalid, valid_pred, eps=1e-7) val_acc = (yvalid == (valid_pred > 0.5).astype(int).flatten()).mean() tqdm.write( f'Epoch {epoch} train_loss={np.mean(train_loss):.4f}; val_loss={val_loss:.4f}; val_acc={val_acc:.4f}' ) loss_log['train'].append(np.mean(train_loss)) loss_log['valid'].append(val_loss) scheduler.step(loss_log['valid'][-1]) torch.save(net.state_dict(), 'ghostnet_model.pt') print('Training is complete.')