Пример #1
0
    def gpu_kernels(self, node, name):
        write = write_w(self.output_type.dtype)
        if self.output_type.dtype == "float16":
            otype = "ga_half"
            # limit the values of the state that we use.
            mask = "& 0x7fff"
            offset = "+ 1"
            NORM = "3.0458e-05f"  # numpy.float16(1.0/(2**15+33))
            # this was determined by finding the biggest number such that
            # numpy.float16(number * ((M1 & 0x7fff) + 1)) < 1.0
        elif self.output_type.dtype == "float32":
            otype = "float"
            mask = ""
            offset = ""
            NORM = "4.6566126e-10f"  # numpy.float32(1.0/(2**31+65))
            # this was determined by finding the biggest number such that
            # numpy.float32(number * M1) < 1.0
        elif self.output_type.dtype == "float64":
            otype = "double"
            mask = ""
            offset = ""
            NORM = "4.656612873077392578125e-10"
        else:
            raise ValueError("Unsupported data type for output",
                             self.output_type.dtype)
        code = ("""#include "cluda.h"

        KERNEL void mrg_uniform(
                GLOBAL_MEM %(otype)s *sample_data,
                ga_size sample_offset,
                GLOBAL_MEM ga_int *state_data,
                ga_size state_offset,
                const ga_uint Nsamples,
                const ga_uint Nstreams_used)
        {
            sample_data = (GLOBAL_MEM %(otype)s *)(((GLOBAL_MEM char *)sample_data) + sample_offset);
            state_data = (GLOBAL_MEM ga_int *)(((GLOBAL_MEM char *)state_data) + state_offset);
            /*
             * The cluda backend makes sure that ga_int corresponds to
             * a 32 bit signed type on the target device.  It is not a
             * variable width type.
             */
            const ga_int i7 = 7;
            const ga_int i9 = 9;
            const ga_int i15 = 15;
            const ga_int i16 = 16;
            const ga_int i22 = 22;
            const ga_int i24 = 24;

            const ga_int M1 = 2147483647;      //2^31 - 1
            const ga_int M2 = 2147462579;      //2^31 - 21069
            const ga_int MASK12 = 511;       //2^9 - 1
            const ga_int MASK13 = 16777215;  //2^24 - 1
            const ga_int MASK2 = 65535;      //2^16 - 1
            const ga_int MULT2 = 21069;

            const ga_uint idx = GID_0 * LDIM_0 + LID_0;
            ga_int y1, y2, x11, x12, x13, x21, x22, x23;

            if (idx < Nstreams_used)
            {
            x11 = state_data[idx*6+0];
            x12 = state_data[idx*6+1];
            x13 = state_data[idx*6+2];
            x21 = state_data[idx*6+3];
            x22 = state_data[idx*6+4];
            x23 = state_data[idx*6+5];

            for (ga_uint i = idx; i < Nsamples; i += Nstreams_used)
            {
                y1 = ((x12 & MASK12) << i22) + (x12 >> i9) + ((x13 & MASK13) << i7) + (x13 >> i24);
                y1 -= (y1 < 0 || y1 >= M1) ? M1 : 0;
                y1 += x13;
                y1 -= (y1 < 0 || y1 >= M1) ? M1 : 0;
                x13 = x12;
                x12 = x11;
                x11 = y1;

                y1 = ((x21 & MASK2) << i15) + (MULT2 * (x21 >> i16));
                y1 -= (y1 < 0 || y1 >= M2) ? M2 : 0;
                y2 = ((x23 & MASK2) << i15) + (MULT2 * (x23 >> i16));
                y2 -= (y2 < 0 || y2 >= M2) ? M2 : 0;
                y2 += x23;
                y2 -= (y2 < 0 || y2 >= M2) ? M2 : 0;
                y2 += y1;
                y2 -= (y2 < 0 || y2 >= M2) ? M2 : 0;

                x23 = x22;
                x22 = x21;
                x21 = y2;

                if (x11 <= x21) {
                    sample_data[i] = %(write)s((((x11 - x21 + M1) %(mask)s) %(offset)s) * %(NORM)s);
                }
                else
                {
                    sample_data[i] = %(write)s((((x11 - x21) %(mask)s) %(offset)s) * %(NORM)s);
                }
            }

            state_data[idx*6+0]= x11;
            state_data[idx*6+1]= x12;
            state_data[idx*6+2]= x13;
            state_data[idx*6+3]= x21;
            state_data[idx*6+4]= x22;
            state_data[idx*6+5]= x23;
            }
        }

        """ % locals())

        # we shouldn't get to this line if it's about to fail
        from pygpu import gpuarray

        return [
            Kernel(
                code=code,
                name="mrg_uniform",
                params=[
                    gpuarray.GpuArray,
                    gpuarray.SIZE,
                    gpuarray.GpuArray,
                    gpuarray.SIZE,
                    "uint32",
                    "uint32",
                ],
                flags=Kernel.get_flags(self.output_type.dtype, "int32"),
            )
        ]
Пример #2
0
    def gpu_kernels(self, node, nodename):
        dtype_x = node.inputs[0].dtype
        dtype_b = node.inputs[1].dtype
        dtype_sm = node.outputs[0].dtype
        load_x = load_w(node.inputs[0].dtype)
        load_b = load_w(node.inputs[1].dtype)
        write_sm = write_w(node.outputs[0].dtype)
        work_sm = work_dtype(node.outputs[0].dtype)
        flags = Kernel.get_flags(dtype_x, dtype_b, dtype_sm)
        type_x = gpuarray.dtype_to_ctype(dtype_x)
        type_b = gpuarray.dtype_to_ctype(dtype_b)
        type_sm = gpuarray.dtype_to_ctype(dtype_sm)
        type_acc = gpuarray.dtype_to_ctype(work_sm)

        ctype = gpuarray.dtype_to_ctype(work_sm)

        params = [
            gpuarray.SIZE,
            gpuarray.SIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
        ]
        kernels = []
        kname = "kSoftmaxWithBias"
        k_var = "kSoftmaxWithBias_" + nodename
        code = ("""#include "cluda.h"

        KERNEL void %(kname)s (const ga_size M, const ga_size N,
                       GLOBAL_MEM const %(type_x)s * x, const ga_size offset_x, const ga_ssize sx0, const ga_ssize sx1,
                       GLOBAL_MEM const %(type_b)s * b, const ga_size offset_b, const ga_ssize sb0,
                       GLOBAL_MEM %(type_sm)s * sm, const ga_size offset_sm, const ga_ssize sm_s0, const ga_ssize sm_s1 GA_DECL_SHARED_PARAM(%(type_acc)s, buf))
        {
            GA_DECL_SHARED_BODY(%(type_acc)s, buf);
            LOCAL_MEM_ARG %(type_acc)s * buf2 = buf + N;
            x = (GLOBAL_MEM const %(type_x)s *)(((GLOBAL_MEM char *)x)+offset_x);
            b = (GLOBAL_MEM const %(type_b)s *)(((GLOBAL_MEM char *)b)+offset_b);
            sm = (GLOBAL_MEM %(type_sm)s *)(((GLOBAL_MEM char *)sm)+offset_sm);
            for (ga_int blockIDX = GID_0; blockIDX < M; blockIDX += GDIM_0){
                for (ga_int tx = LID_0; tx< N; tx += LDIM_0){
                    buf[tx] = %(load_x)s(x[blockIDX * sx0 + tx * sx1]);
                    buf[tx] += %(load_b)s(b[tx * sb0]);
                    buf2[tx] = buf[tx];
                }
                local_barrier();
                {
                    // This function trashes buf[1..GA_WARP_SIZE],
                    // leaving the reduction result in buf[0].
                    if (LID_0 < GA_WARP_SIZE) {
                        for (ga_int i = LID_0 + GA_WARP_SIZE; i < N; i += GA_WARP_SIZE)
                        {
                            buf[LID_0] = max(buf[LID_0], buf[i]);
                        }
                    }
                    local_barrier();
                    //reduce so that LID_0 0 has the reduction of everything
                    for (ga_uint _n = GA_WARP_SIZE / 2; _n > 0; _n /= 2) {
                        if (LID_0 < _n && LID_0 + _n < N)
                            buf[LID_0] = max(buf[LID_0], buf[LID_0+_n]);
                        local_barrier();
                    }
                }
                %(ctype)s row_max = buf[0];
                local_barrier();
                for(ga_int __i=LID_0; __i<N; __i+=LDIM_0){;
                    buf[__i] = exp(buf2[__i] - row_max);
                    buf2[__i] = buf[__i];
                }
                local_barrier();
                {
                    // This function trashes buf[1..GA_WARP_SIZE],
                    // leaving the reduction result in buf[0].
                    if (LID_0 < GA_WARP_SIZE) {
                        for (ga_int i = LID_0 + GA_WARP_SIZE; i < N; i += GA_WARP_SIZE)
                        {
                            buf[LID_0] = buf[LID_0] + buf[i];
                        }
                    }
                    local_barrier();
                    //reduce so that LID_0 0 has the reduction of everything
                    for (ga_uint _n = GA_WARP_SIZE / 2; _n > 0; _n /= 2) {
                        if (LID_0 < _n && LID_0 + _n < N)
                            buf[LID_0] = buf[LID_0] + buf[LID_0+_n];
                        local_barrier();
                    }
                }
                %(ctype)s row_sum = buf[0];
                local_barrier();
                for(ga_int __i=LID_0; __i<N; __i+=LDIM_0){
                    buf[__i] = buf2[__i] / row_sum;
                }
                local_barrier();
                for (ga_int tx = LID_0; tx< N; tx += LDIM_0){
                    sm[blockIDX * sm_s0 + tx * sm_s1] = %(write_sm)s(buf[tx]);
                }
                local_barrier();
            }
        }
        """ % locals())
        kernels.append(
            Kernel(code=code,
                   name=kname,
                   params=params,
                   flags=flags,
                   objvar=k_var))
        kname = "kSoftmaxWithBias_fixed_shared"
        k_var = "kSoftmaxWithBias_fixed_shared" + nodename
        code = ("""#include "cluda.h"

        KERNEL void %(kname)s (const ga_size M, const ga_size N,
                       GLOBAL_MEM const %(type_x)s * x, const ga_size offset_x, const ga_ssize sx0, const ga_ssize sx1,
                       GLOBAL_MEM const %(type_b)s * b, const ga_size offset_b, const ga_ssize sb0,
                       GLOBAL_MEM %(type_sm)s * sm, const ga_size offset_sm, const ga_ssize sm_s0, const ga_ssize sm_s1 GA_DECL_SHARED_PARAM(%(type_acc)s, buf))
        {
            GA_DECL_SHARED_BODY(%(type_acc)s, buf);
            x = (GLOBAL_MEM const %(type_x)s *)(((GLOBAL_MEM char *)x)+offset_x);
            b = (GLOBAL_MEM const %(type_b)s *)(((GLOBAL_MEM char *)b)+offset_b);
            sm = (GLOBAL_MEM %(type_sm)s *)(((GLOBAL_MEM char *)sm)+offset_sm);
            for (ga_int blockIDX = GID_0; blockIDX < M; blockIDX += GDIM_0){
                GLOBAL_MEM const %(type_x)s *x_ptr = &x[blockIDX * sx0];
                GLOBAL_MEM %(type_sm)s *sm_ptr = &sm[blockIDX * sm_s0];
                {
                    // This function trashes buf[1..n_threads],
                    // leaving the reduction result in buf[0].
                    %(ctype)s red = %(load_x)s(x_ptr[LID_0 * sx1]) + %(load_b)s(b[LID_0 * sb0]);
                    #pragma unroll 16
                    for (ga_int i = LID_0 + LDIM_0; i<N; i += LDIM_0) {
                        red = max(red, %(load_x)s(x_ptr[i * sx1]) + %(load_b)s(b[i * sb0]));
                    }
                    buf[LID_0] = red;
                    local_barrier();
                    if (LID_0 < GA_WARP_SIZE) {
                        for (ga_int i = LID_0 + GA_WARP_SIZE; i < LDIM_0; i += GA_WARP_SIZE) {
                            buf[LID_0] = max(buf[LID_0], buf[i]);
                        }
                    }
                    local_barrier();
                    //reduce so that LID_0 0 has the reduction of everything
                    for (ga_uint _n = GA_WARP_SIZE / 2; _n > 0; _n /= 2) {
                        if (LID_0 < _n && LID_0 + _n < N)
                            buf[LID_0] = max(buf[LID_0], buf[LID_0+_n]);
                        local_barrier();
                    }
                }
                %(ctype)s row_max = buf[0];
                local_barrier();
                {
                    // This function trashes buf[1..n_threads],
                    // leaving the reduction result in buf[0].
                    %(ctype)s red = exp(%(load_x)s(x_ptr[LID_0 * sx1]) + %(load_b)s(b[LID_0 * sb0]) - row_max);
                    #pragma unroll 16
                    for (ga_int i = LID_0 + LDIM_0; i<N; i += LDIM_0) {
                    red = red + exp(%(load_x)s(x_ptr[i * sx1]) + %(load_b)s(b[i * sb0]) - row_max);
                    }
                    buf[LID_0] = red;
                    local_barrier();
                    if (LID_0 < GA_WARP_SIZE) {
                        for (ga_int i = LID_0 + GA_WARP_SIZE; i < LDIM_0; i += GA_WARP_SIZE) {
                            buf[LID_0] = buf[LID_0] + buf[i];
                        }
                    }
                    local_barrier();
                    //reduce so that LID_0 0 has the reduction of everything
                    for (ga_uint _n = GA_WARP_SIZE / 2; _n > 0; _n /= 2) {
                        if (LID_0 < _n && LID_0 + _n < N)
                            buf[LID_0] = buf[LID_0] + buf[LID_0+_n];
                        local_barrier();
                    }
                }
                %(ctype)s row_sum = buf[0];
                local_barrier();
                for (ga_int tx = LID_0; tx< N; tx += LDIM_0){
                    sm_ptr[tx * sm_s1] = %(write_sm)s(exp(%(load_x)s(x_ptr[tx * sx1]) + %(load_b)s(b[tx * sb0]) - row_max) / row_sum);
                }
                local_barrier();
            }
        }
        """ % locals())
        kernels.append(
            Kernel(code=code,
                   name=kname,
                   params=params,
                   flags=flags,
                   objvar=k_var))
        return kernels
Пример #3
0
    def gpu_kernels(self, node, nodename):
        dtype_dnll = node.inputs[0].dtype
        dtype_sm = node.inputs[1].dtype
        dtype_y_idx = node.inputs[2].dtype
        dtype_dx = node.outputs[0].dtype
        work_dnll = work_dtype(dtype_dnll)
        load_dnll = load_w(dtype_dnll)
        load_sm = load_w(dtype_sm)
        write_dx = write_w(dtype_dx)
        flags = Kernel.get_flags(dtype_dnll, dtype_sm, dtype_y_idx, dtype_dx)
        wtype_dnll = gpuarray.dtype_to_ctype(work_dnll)
        type_dnll = gpuarray.dtype_to_ctype(dtype_dnll)
        type_sm = gpuarray.dtype_to_ctype(dtype_sm)
        type_y_idx = gpuarray.dtype_to_ctype(dtype_y_idx)
        type_dx = gpuarray.dtype_to_ctype(dtype_dx)
        kname = "kCrossEntropySoftmax1HotWithBiasDx"
        k_var = "kCrossEntropySoftmax1HotWithBiasDx_" + nodename
        params = [
            gpuarray.SIZE,
            gpuarray.SIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
        ]
        sio = StringIO()
        print(
            """#include "cluda.h"

        KERNEL void %(kname)s(
           const ga_size N, const ga_size K,
           GLOBAL_MEM const %(type_dnll)s* dnll, const ga_size offset_dnll, const ga_ssize dnll_s0,
           GLOBAL_MEM const %(type_sm)s* sm, const ga_size offset_sm, const ga_ssize sm_s0, const ga_ssize sm_s1,
           GLOBAL_MEM const %(type_y_idx)s* y_idx, const ga_size offset_y_idx, const ga_ssize y_idx_s0,
           GLOBAL_MEM %(type_dx)s* dx, const ga_size offset_dx, const ga_ssize dx_s0, const ga_ssize dx_s1)
        {
            dnll = (GLOBAL_MEM const %(type_dnll)s *)(((GLOBAL_MEM char *)dnll)+offset_dnll);
            sm = (GLOBAL_MEM const %(type_sm)s *)(((GLOBAL_MEM char *)sm)+offset_sm);
            y_idx = (GLOBAL_MEM const %(type_y_idx)s *)(((GLOBAL_MEM char *)y_idx)+offset_y_idx);
            dx = (GLOBAL_MEM %(type_dx)s *)(((GLOBAL_MEM char *)dx)+offset_dx);
            for (ga_int i = GID_0; i < N; i += GDIM_0)
            {
                %(wtype_dnll)s dnll_i = %(load_dnll)s(dnll[i * dnll_s0]);
                %(type_y_idx)s y_i = y_idx[i * y_idx_s0];
                for (ga_int j = LID_0; j < K; j += LDIM_0)
                {
                    if (y_i == j)
                    {
                        dx[i * dx_s0 + j * dx_s1] =
                            %(write_dx)s(dnll_i *
                              (%(load_sm)s(sm[i * sm_s0 + j * sm_s1]) - 1.0));
                    }
                    else
                    {
                        dx[i * dx_s0 + j * dx_s1] =
                            %(write_dx)s(dnll_i *
                              %(load_sm)s(sm[i * sm_s0 + j * sm_s1]));
                    }
                }
            }
        }
        """ % locals(),
            file=sio,
        )
        return [
            Kernel(
                code=sio.getvalue(),
                name=kname,
                params=params,
                flags=flags,
                objvar=k_var,
            )
        ]
Пример #4
0
    def gpu_kernels(self, node, nodename):
        dtype_x = node.inputs[0].dtype
        dtype_b = node.inputs[1].dtype
        dtype_y_idx = node.inputs[2].dtype
        work_x = work_dtype(dtype_x)
        work_b = work_dtype(dtype_b)
        load_x = load_w(dtype_x)
        load_b = load_w(dtype_b)
        write_x = write_w(dtype_x)
        write_b = write_w(dtype_b)
        flags = Kernel.get_flags(dtype_x, dtype_b, dtype_y_idx)
        type_x = gpuarray.dtype_to_ctype(dtype_x)
        type_b = gpuarray.dtype_to_ctype(dtype_b)
        work_x = gpuarray.dtype_to_ctype(work_x)
        type_y_idx = gpuarray.dtype_to_ctype(dtype_y_idx)
        kname = "k_xent_sm_1hot_bias"
        k_var = "k_xent_sm_1hot_bias_" + nodename
        if node.inputs[0].type.context.kind != b"cuda":
            f = ""
        else:
            f = "" if dtype_x == "float64" else "f"
        params = [
            gpuarray.SIZE,
            gpuarray.SIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
            gpuarray.SSIZE,
            gpuarray.GpuArray,
            gpuarray.SIZE,
            gpuarray.SSIZE,
        ]
        sio = StringIO()
        print(
            """#include "cluda.h"

        KERNEL void %(kname)s(const ga_size M, const ga_size N,
            GLOBAL_MEM const %(type_x)s* x_data, const ga_size offset_x, const ga_ssize xs0, const ga_ssize xs1,
            GLOBAL_MEM const %(type_b)s* b, const ga_size offset_b, const ga_ssize bs0,
            GLOBAL_MEM const %(type_y_idx)s* y_idx_data, const ga_size offset_y_idx, const ga_ssize y_idxs0,
            GLOBAL_MEM %(type_x)s* nll_data, const ga_size offset_nll, const ga_ssize nlls0,
            GLOBAL_MEM %(type_x)s* sm_data, const ga_size offset_sm, const ga_ssize sms0, const ga_ssize sms1,
            GLOBAL_MEM %(type_y_idx)s* am_data, const ga_size offset_am, const ga_ssize ams0 GA_DECL_SHARED_PARAM(%(work_x)s, per_thread_values))
        {
          x_data = (GLOBAL_MEM const %(type_x)s *)(((GLOBAL_MEM char *)x_data)+offset_x);
          b = (GLOBAL_MEM const %(type_b)s *)(((GLOBAL_MEM char *)b)+offset_b);
          y_idx_data = (GLOBAL_MEM const %(type_y_idx)s *)(((GLOBAL_MEM char *)y_idx_data)+offset_y_idx);
          nll_data = (GLOBAL_MEM %(type_x)s *)(((GLOBAL_MEM char *)nll_data)+offset_nll);
          sm_data = (GLOBAL_MEM %(type_x)s *)(((GLOBAL_MEM char *)sm_data)+offset_sm);
          am_data = (GLOBAL_MEM %(type_y_idx)s *)(((GLOBAL_MEM char *)am_data)+offset_am);
          for (ga_int row = GID_0; row < M; row += GDIM_0){
            GLOBAL_MEM const %(type_x)s* x = x_data + xs0 * row;
            GLOBAL_MEM %(type_x)s* sm = sm_data + sms0 * row;
            GA_DECL_SHARED_BODY(%(work_x)s, per_thread_values);
            LOCAL_MEM %(work_x)s row_max, sum, sum_inv;
            LOCAL_MEM ga_int row_max_threadIdx;
            %(work_x)s per_thread_row_max, per_thread_sum;
            ga_int per_thread_row_max_j;
            // COMPUTE ROW MAX AND ARGMAX
            // compute separate per-thread maximums and argmaxes
            per_thread_row_max = NAN;
            per_thread_row_max_j = 0;
            for (ga_int j = LID_0; j < N; j += LDIM_0)
            {
              %(work_x)s row_ij = %(load_x)s(x[j * xs1]) + %(load_b)s(b[j * bs0]);
              per_thread_row_max_j = (row_ij > per_thread_row_max) ? j : per_thread_row_max_j;
              per_thread_row_max = fmax%(f)s(row_ij, per_thread_row_max);
            }
            per_thread_values[LID_0] = per_thread_row_max;
            local_barrier();
            if (LID_0 == 0) {
              row_max = NAN;
              row_max_threadIdx = 0;
              for (ga_int j = 0; j < LDIM_0; j++)
              {
                %(work_x)s per_thread_max = per_thread_values[j];
                row_max_threadIdx = (per_thread_max > row_max) ? j : row_max_threadIdx;
                row_max = fmax%(f)s(per_thread_max, row_max);
              }
            }
            local_barrier();
            // The thread with the highest max writes out which of its
            // values was the winner.
            if (LID_0 == row_max_threadIdx) am_data[row * ams0] = per_thread_row_max_j;
            // COMPUTE SOFTMAX
            per_thread_sum = 0.0;
            for (ga_int j = LID_0; j < N; j += LDIM_0)
            {
              %(work_x)s row_ij = %(load_x)s(x[j * xs1]) + %(load_b)s(b[j * bs0]);
              %(work_x)s sm_ij = exp%(f)s(row_ij - row_max);
              per_thread_sum += sm_ij;
              sm[j * sms1] = %(write_x)s(sm_ij);
            }
            per_thread_values[LID_0] = per_thread_sum;
            local_barrier();
            if (LID_0 == 0) {
              sum = 0.0;
              for (ga_int j = 0; j < LDIM_0; j++) {
                sum += per_thread_values[j];
              }
              sum_inv = 1.0 / sum;
            }
            local_barrier();
            for (ga_int j = LID_0; j < N; j += LDIM_0) {
              sm[j * sms1] = %(write_x)s(%(load_x)s(sm[j * sms1]) * sum_inv);
            }
            if (LID_0 == 0) {
              const %(type_y_idx)s y_idx = (ga_int)y_idx_data[row * y_idxs0];
              if ((y_idx >= N || y_idx < 0)) {
                // raise some suspicion.
                nll_data[row * nlls0] = %(write_x)s(0.0);
              } else {
                nll_data[row * nlls0] = %(write_x)s(
                   - %(load_x)s(x[y_idx * xs1])
                   - %(load_b)s(b[y_idx * bs0])
                   + row_max + log%(f)s(sum));
              }
            }
          }
        }
        """ % locals(),
            file=sio,
        )

        return [
            Kernel(
                code=sio.getvalue(),
                name=kname,
                params=params,
                flags=flags,
                objvar=k_var,
            )
        ]
Пример #5
0
    def gpu_kernels(self, node, name):
        out_ctype = pygpu.gpuarray.dtype_to_ctype(node.outputs[0].dtype)
        pvals_ctype = pygpu.gpuarray.dtype_to_ctype(node.inputs[0].dtype)
        unis_ctype = pygpu.gpuarray.dtype_to_ctype(node.inputs[1].dtype)
        work_ctype = pygpu.gpuarray.dtype_to_ctype(work_dtype(node.inputs[0].dtype))
        write_out_ctype = write_w(node.outputs[0].dtype)
        load_in_ctype = load_w(node.inputs[0].dtype)
        code = """#include "cluda.h"

KERNEL void k_multi_warp_multinomial(
    const ga_size nb_multi,
    const ga_size nb_outcomes,
    GLOBAL_MEM %(pvals_ctype)s *global_pvals,
    const ga_size global_pvals_offset,
    const ga_ssize pvals_row_stride,
    const ga_ssize pvals_col_stride,
    GLOBAL_MEM %(unis_ctype)s *global_unis,
    const ga_size global_unis_offset,
    const ga_ssize unis_stride,
    GLOBAL_MEM %(out_ctype)s *global_outs,
    const ga_size global_outs_offset,
    const ga_ssize outs_row_stride,
    const ga_ssize outs_col_stride
)
{
    global_pvals = (GLOBAL_MEM %(pvals_ctype)s *)(((GLOBAL_MEM char *)global_pvals) + global_pvals_offset);
    global_unis = (GLOBAL_MEM %(unis_ctype)s *)(((GLOBAL_MEM char *)global_unis) + global_unis_offset);
    global_outs = (GLOBAL_MEM %(out_ctype)s *)(((GLOBAL_MEM char *)global_outs) + global_outs_offset);
    // each thread takes care of one multinomial draw
    int n = LDIM_0*GID_0 + LID_0;
    if (n < nb_multi)
    {
        %(work_ctype)s cummul = 0.;
        bool done = false;
        const %(work_ctype)s unis_n = %(load_in_ctype)s(global_unis[n*unis_stride]);
        for (ga_size m = 0; m < nb_outcomes; ++m)
        {
            %(work_ctype)s current_out = 0;
            if (!done)
            {
                cummul += %(load_in_ctype)s(global_pvals[m * pvals_col_stride + n * pvals_row_stride]);
                if (unis_n < cummul)
                {
                    current_out = 1;
                    done = true;
                }
            }
            //write out transposed for speed.
            global_outs[n * outs_col_stride +
                        m * outs_row_stride] = %(write_out_ctype)s(current_out);
        }
    }
}
""" % dict(
            out_ctype=out_ctype,
            write_out_ctype=write_out_ctype,
            work_ctype=work_ctype,
            pvals_ctype=pvals_ctype,
            unis_ctype=unis_ctype,
            load_in_ctype=load_in_ctype,
        )
        return [
            Kernel(
                code=code,
                name="k_multi_warp_multinomial",
                params=[
                    pygpu.gpuarray.SIZE,
                    pygpu.gpuarray.SIZE,
                    pygpu.gpuarray.GpuArray,
                    pygpu.gpuarray.SIZE,
                    pygpu.gpuarray.SSIZE,
                    pygpu.gpuarray.SSIZE,
                    pygpu.gpuarray.GpuArray,
                    pygpu.gpuarray.SIZE,
                    pygpu.gpuarray.SSIZE,
                    pygpu.gpuarray.GpuArray,
                    pygpu.gpuarray.SIZE,
                    pygpu.gpuarray.SSIZE,
                    pygpu.gpuarray.SSIZE,
                ],
                flags=Kernel.get_flags(node.outputs[0].dtype),
                objvar="k_multi_warp_multinomial_" + name,
            )
        ]