Пример #1
0
def test_gammaincc_nan():
    x1 = aet.dscalar()
    x2 = aet.dscalar()
    y = gammaincc(x1, x2)
    test_func = CLinker().accept(FunctionGraph([x1, x2], [y])).make_function()
    assert np.isnan(test_func(-1, 1))
    assert np.isnan(test_func(1, -1))
    assert np.isnan(test_func(-1, -1))
Пример #2
0
def test_shared_input_output():
    # Test bug reported on the mailing list by Alberto Orlandi
    # https://groups.google.com/d/topic/theano-users/6dLaEqc2R6g/discussion
    # The shared variable is both an input and an output of the function.
    inc = iscalar("inc")
    state = shared(0)
    state.name = "state"
    linker = CLinker()
    mode = Mode(linker=linker)
    f = function([inc], state, updates=[(state, state + inc)], mode=mode)
    g = function([inc], state, updates=[(state, state + inc)])

    # Initial value
    f0 = f(0)
    g0 = g(0)
    assert f0 == g0 == 0, (f0, g0)

    # Increment state via f, returns the previous value.
    f2 = f(2)
    assert f2 == f0, (f2, f0)
    f0 = f(0)
    g0 = g(0)
    assert f0 == g0 == 2, (f0, g0)

    # Increment state via g, returns the previous value
    g3 = g(3)
    assert g3 == g0, (g3, g0)
    f0 = f(0)
    g0 = g(0)
    assert f0 == g0 == 5, (f0, g0)

    vstate = shared(np.zeros(3, dtype="int32"))
    vstate.name = "vstate"
    fv = function([inc], vstate, updates=[(vstate, vstate + inc)], mode=mode)
    gv = function([inc], vstate, updates=[(vstate, vstate + inc)])

    # Initial value
    fv0 = fv(0)
    gv0 = gv(0)
    assert np.all(fv0 == 0), fv0
    assert np.all(gv0 == 0), gv0

    # Increment state via f, returns the previous value.
    fv2 = fv(2)
    assert np.all(fv2 == fv0), (fv2, fv0)
    fv0 = fv(0)
    gv0 = gv(0)
    assert np.all(fv0 == 2), fv0
    assert np.all(gv0 == 2), gv0

    # Increment state via g, returns the previous value
    gv3 = gv(3)
    assert np.all(gv3 == gv0), (gv3, gv0)
    fv0 = fv(0)
    gv0 = gv(0)
    assert np.all(fv0 == 5), fv0
    assert np.all(gv0 == 5), gv0
Пример #3
0
    def test_c_views(self):
        x_at = vector()
        thunk, inputs, outputs = (CLinker().accept(
            FunctionGraph([x_at], [x_at[None]])).make_thunk())

        # This is a little hackish, but we're hoping that--by running this more than
        # a few times--we're more likely to run into random memory that isn't the same
        # as the broadcasted value; that way, we'll be able to tell that we're getting
        # junk data from a poorly constructed array view.
        x_val = np.broadcast_to(2039, (5000, ))
        for i in range(1000):
            inputs[0].storage[0] = x_val
            thunk()
            # Make sure it's a view of the original data
            assert np.shares_memory(x_val, outputs[0].storage[0])
            # Confirm the broadcasted value in the output
            assert np.array_equiv(outputs[0].storage[0], 2039)
Пример #4
0
def test_duallinker_mismatch():
    x, y, z = inputs()
    # bad_sub is correct in C but erroneous in Python
    e = bad_sub(mul(x, y), mul(y, z))
    g = FunctionGraph([x, y, z], [e])
    lnk = DualLinker(checker=_my_checker).accept(g)
    fn = make_function(lnk)

    # good
    assert make_function(CLinker().accept(g))(1.0, 2.0, 3.0) == -4.0
    # good
    assert make_function(OpWiseCLinker().accept(g))(1.0, 2.0, 3.0) == -4.0

    # (purposely) wrong
    assert make_function(PerformLinker().accept(g))(1.0, 2.0, 3.0) == -10.0

    with pytest.raises(MyExc):
        # this runs OpWiseCLinker and PerformLinker in parallel and feeds
        # variables of matching operations to _my_checker to verify that they
        # are the same.
        fn(1.0, 2.0, 3.0)
Пример #5
0
    NavigatorOptimizer,
)
from aesara.graph.optdb import EquilibriumDB, LocalGroupDB, Query, SequenceDB, TopoDB
from aesara.link.basic import PerformLinker
from aesara.link.c.basic import CLinker, OpWiseCLinker
from aesara.link.jax import JAXLinker
from aesara.link.vm import VMLinker

_logger = logging.getLogger("aesara.compile.mode")

# If a string is passed as the linker argument in the constructor for
# Mode, it will be used as the key to retrieve the real linker in this
# dictionary
predefined_linkers = {
    "py": PerformLinker(),  # Use allow_gc Aesara flag
    "c": CLinker(),  # Don't support gc. so don't check allow_gc
    "c|py": OpWiseCLinker(),  # Use allow_gc Aesara flag
    "c|py_nogc": OpWiseCLinker(allow_gc=False),
    "vm": VMLinker(use_cloop=False),  # Use allow_gc Aesara flag
    "cvm": VMLinker(use_cloop=True),  # Use allow_gc Aesara flag
    "vm_nogc": VMLinker(allow_gc=False, use_cloop=False),
    "cvm_nogc": VMLinker(allow_gc=False, use_cloop=True),
    "jax": JAXLinker(),
}


def register_linker(name, linker):
    """Add a `Linker` which can be referred to by `name` in `Mode`."""
    if name in predefined_linkers:
        raise ValueError(f"Linker name already taken: {name}")
    predefined_linkers[name] = linker
Пример #6
0
def test_clinker_single_node():
    x, y, z = inputs()
    node = add.make_node(x, y)
    lnk = CLinker().accept(FunctionGraph(node.inputs, node.outputs))
    fn = make_function(lnk)
    assert fn(2.0, 7.0) == 9
Пример #7
0
def test_clinker_straightforward():
    x, y, z = inputs()
    e = add(mul(add(x, y), div(x, y)), bad_sub(bad_sub(x, y), z))
    lnk = CLinker().accept(FunctionGraph([x, y, z], [e]))
    fn = make_function(lnk)
    assert fn(2.0, 2.0, 2.0) == 2.0
Пример #8
0
def test_SymPyCCode():
    op = SymPyCCode([xs, ys], xs + ys)
    e = op(xt, yt)
    g = FunctionGraph([xt, yt], [e])
    fn = make_function(CLinker().accept(g))
    assert fn(1.0, 2.0) == 3.0
Пример #9
0
 def test_c_inplace(self):
     self.with_linker_inplace(CLinker(), self.cop, self.ctype, self.rand_cval)
Пример #10
0
 def test_c(self):
     self.with_linker(CLinker(), self.cop, self.ctype, self.rand_cval)