Пример #1
0
def spectral_radius_bound(X, log2_exponent):
    """
    Returns upper bound on the largest eigenvalue of square symmetrix matrix X.

    log2_exponent must be a positive-valued integer. The larger it is, the
    slower and tighter the bound. Values up to 5 should usually suffice. The
    algorithm works by multiplying X by itself this many times.

    From V.Pan, 1990. "Estimating the Extremal Eigenvalues of a Symmetric
    Matrix", Computers Math Applic. Vol 20 n. 2 pp 17-22.
    Rq: an efficient algorithm, not used here, is defined in this paper.

    """
    if X.type.ndim != 2:
        raise TypeError("spectral_radius_bound requires a matrix argument", X)
    if not isinstance(log2_exponent, int):
        raise TypeError("spectral_radius_bound requires an integer exponent",
                        log2_exponent)
    if log2_exponent <= 0:
        raise ValueError(
            "spectral_radius_bound requires a strictly positive "
            "exponent",
            log2_exponent,
        )

    XX = X
    for i in range(log2_exponent):
        XX = dot(XX, XX)
    return aet_pow(trace(XX), 2**(-log2_exponent))
Пример #2
0
def test_trace():
    rng = np.random.RandomState(utt.fetch_seed())
    x = matrix()
    g = trace(x)
    f = aesara.function([x], g)

    for shp in [(2, 3), (3, 2), (3, 3)]:
        m = rng.rand(*shp).astype(config.floatX)
        v = np.trace(m)
        assert v == f(m)

    xx = vector()
    ok = False
    try:
        trace(xx)
    except TypeError:
        ok = True
    except ValueError:
        ok = True

    assert ok