Пример #1
0
def test_multMatVect():
    A1 = tensor.lmatrix("A1")
    s1 = tensor.ivector("s1")
    m1 = tensor.iscalar("m1")
    A2 = tensor.lmatrix("A2")
    s2 = tensor.ivector("s2")
    m2 = tensor.iscalar("m2")

    g0 = rng_mrg.DotModulo()(A1, s1, m1, A2, s2, m2)
    f0 = aesara.function([A1, s1, m1, A2, s2, m2], g0)

    i32max = np.iinfo(np.int32).max

    A1 = np.random.randint(0, i32max, (3, 3)).astype("int64")
    s1 = np.random.randint(0, i32max, 3).astype("int32")
    m1 = np.asarray(np.random.randint(i32max), dtype="int32")
    A2 = np.random.randint(0, i32max, (3, 3)).astype("int64")
    s2 = np.random.randint(0, i32max, 3).astype("int32")
    m2 = np.asarray(np.random.randint(i32max), dtype="int32")

    f0.input_storage[0].storage[0] = A1
    f0.input_storage[1].storage[0] = s1
    f0.input_storage[2].storage[0] = m1
    f0.input_storage[3].storage[0] = A2
    f0.input_storage[4].storage[0] = s2
    f0.input_storage[5].storage[0] = m2

    r_a1 = rng_mrg.matVecModM(A1, s1, m1)
    r_a2 = rng_mrg.matVecModM(A2, s2, m2)
    f0.fn()
    r_b = f0.output_storage[0].value

    assert np.allclose(r_a1, r_b[:3])
    assert np.allclose(r_a2, r_b[3:])
Пример #2
0
def multMatVect(v, A, m1, B, m2):
    # TODO : need description for parameter and return
    """
    Multiply the first half of v by A with a modulo of m1 and the second half
    by B with a modulo of m2.

    Notes
    -----
    The parameters of dot_modulo are passed implicitly because passing them
    explicitly takes more time than running the function's C-code.

    """
    if multMatVect.dot_modulo is None:
        A_sym = tensor.lmatrix("A")
        s_sym = tensor.ivector("s")
        m_sym = tensor.iscalar("m")
        A2_sym = tensor.lmatrix("A2")
        s2_sym = tensor.ivector("s2")
        m2_sym = tensor.iscalar("m2")
        o = DotModulo()(A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym)
        multMatVect.dot_modulo = function(
            [A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym], o, profile=False)

    # This way of calling the Aesara fct is done to bypass Aesara overhead.
    f = multMatVect.dot_modulo
    f.input_storage[0].storage[0] = A
    f.input_storage[1].storage[0] = v[:3]
    f.input_storage[2].storage[0] = m1
    f.input_storage[3].storage[0] = B
    f.input_storage[4].storage[0] = v[3:]
    f.input_storage[5].storage[0] = m2
    f.fn()
    r = f.output_storage[0].storage[0]

    return r
Пример #3
0
def create_test_hmm():
    srng = at.random.RandomStream()

    N_tt = at.iscalar("N")
    N_tt.tag.test_value = 10
    M_tt = at.iscalar("M")
    M_tt.tag.test_value = 2

    mus_tt = at.matrix("mus")
    mus_tt.tag.test_value = np.stack(
        [np.arange(0.0, 10), np.arange(0.0, -10, -1)],
        axis=-1).astype(aesara.config.floatX)

    sigmas_tt = at.ones((N_tt, ))
    sigmas_tt.name = "sigmas"

    pi_0_rv = srng.dirichlet(at.ones((M_tt, )), name="pi_0")
    Gamma_rv = srng.dirichlet(at.ones((M_tt, M_tt)), name="Gamma")

    S_0_rv = srng.categorical(pi_0_rv, name="S_0")

    def scan_fn(mus_t, sigma_t, S_tm1, Gamma_t):
        S_t = srng.categorical(Gamma_t[S_tm1], name="S_t")
        Y_t = srng.normal(mus_t[S_t], sigma_t, name="Y_t")
        return S_t, Y_t

    (S_rv, Y_rv), scan_updates = aesara.scan(
        fn=scan_fn,
        sequences=[mus_tt, sigmas_tt],
        non_sequences=[Gamma_rv],
        outputs_info=[{
            "initial": S_0_rv,
            "taps": [-1]
        }, {}],
        strict=True,
        name="scan_rv",
    )
    Y_rv.name = "Y_rv"

    scan_op = Y_rv.owner.op
    scan_args = ScanArgs.from_node(Y_rv.owner)

    Gamma_in = scan_args.inner_in_non_seqs[0]
    Y_t = scan_args.inner_out_nit_sot[0]
    mus_t = scan_args.inner_in_seqs[0]
    sigmas_t = scan_args.inner_in_seqs[1]
    S_t = scan_args.inner_out_sit_sot[0]
    rng_in = scan_args.inner_out_shared[0]

    mus_in = Y_rv.owner.inputs[1]
    mus_in.name = "mus_in"
    sigmas_in = Y_rv.owner.inputs[2]
    sigmas_in.name = "sigmas_in"

    # The output `S_rv` is really `S_rv[1:]`, so we have to extract the actual
    # `Scan` output: `S_rv`.
    S_in = S_rv.owner.inputs[0]
    S_in.name = "S_in"

    return locals()
Пример #4
0
    def test_swap_SharedVariable_with_given(self):
        # A special testcase for logistic_sgd.py in Deep Learning Tutorial
        # This test assert that SharedVariable in different function have same storage

        train_x = aesara.shared(value=np.random.rand(10, 10).astype(config.floatX))
        test_x = aesara.shared(value=np.random.rand(10, 10).astype(config.floatX))

        train_y = aesara.shared(value=np.random.rand(10, 1).astype(config.floatX))
        test_y = aesara.shared(value=np.random.rand(10, 1).astype(config.floatX))

        i = tt.iscalar("index")
        x = tt.vector("x")
        y = tt.vector("y")
        # this formular has no sense but for a test
        out = (tt.sum(x) - y) ** 2
        train = aesara.function(
            [i],
            out,
            givens={x: train_x[i], y: train_y[i]},
            updates={train_x: train_x + 0.1},
        )

        test_def = aesara.function([i], out, givens={x: test_x[i], y: test_y[i]})
        test_cpy = train.copy(
            swap={train_x: test_x, train_y: test_y}, delete_updates=True
        )

        for in1, in2 in zip(test_def.maker.inputs, test_cpy.maker.inputs):
            assert in1.value is in2.value
    def test_select_proportional_to_weight(self):
        # Tests that ChoiceFromUniform selects elements, on average,
        # proportional to the their probabilities

        p = tensor.fmatrix()
        u = tensor.fvector()
        n = tensor.iscalar()
        m = multinomial.ChoiceFromUniform(odtype="auto")(p, u, n)

        f = function([p, u, n], m, allow_input_downcast=True)

        n_elements = 100
        n_selected = 10
        mean_rtol = 0.0005
        np.random.seed(12345)
        pvals = np.random.randint(1, 100,
                                  (1, n_elements)).astype(config.floatX)
        pvals /= pvals.sum(1)
        avg_pvals = np.zeros((n_elements, ), dtype=config.floatX)

        for rep in range(10000):
            uni = np.random.rand(n_selected).astype(config.floatX)
            res = f(pvals, uni, n_selected)
            res = np.squeeze(res)
            avg_pvals[res] += 1
        avg_pvals /= avg_pvals.sum()
        avg_diff = np.mean(abs(avg_pvals - pvals))
        assert avg_diff < mean_rtol, avg_diff
Пример #6
0
    def test_merge_ifs_true_false(self):
        x1 = tensor.scalar("x1")
        x2 = tensor.scalar("x2")
        y1 = tensor.scalar("y1")
        y2 = tensor.scalar("y2")
        w1 = tensor.scalar("w1")
        w2 = tensor.scalar("w2")
        c = tensor.iscalar("c")

        out = ifelse(
            c,
            ifelse(c, x1, x2) + ifelse(c, y1, y2) + w1,
            ifelse(c, x1, x2) + ifelse(c, y1, y2) + w2,
        )
        f = aesara.function([x1, x2, y1, y2, w1, w2, c],
                            out,
                            allow_input_downcast=True)
        assert (len([
            x for x in f.maker.fgraph.toposort() if isinstance(x.op, IfElse)
        ]) == 1)

        rng = np.random.RandomState(utt.fetch_seed())
        vx1 = rng.uniform()
        vx2 = rng.uniform()
        vy1 = rng.uniform()
        vy2 = rng.uniform()
        vw1 = rng.uniform()
        vw2 = rng.uniform()
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 1), vx1 + vy1 + vw1)
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 0), vx2 + vy2 + vw2)
Пример #7
0
    def test_not_lazy_if_inplace(self):
        # Tests that if the outputs are scalars and the graph is big,
        # we disable the inplace opt to speed up optimization
        x = tensor.vector("x", dtype=self.dtype)
        y = tensor.vector("y", dtype=self.dtype)
        c = tensor.iscalar("c")
        mode = aesara.compile.get_mode(self.mode).excluding(
            # Disable many opt to keep the graph big enough to disable
            # the opt.
            "fusion",
            "local_add_canonizer",
            "inplace",
            "constant_folding",
            "constant_folding",
        )
        y2 = reduce(lambda x, y: x + y, [y] + list(range(200)))
        f = aesara.function([c, x, y], ifelse(c, x, y2), mode=mode)
        # For not inplace ifelse
        ifnode = [
            n for n in f.maker.fgraph.toposort() if isinstance(n.op, IfElse)
        ]
        assert len(ifnode) == 1
        assert not ifnode[0].op.as_view
        rng = np.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = np.asarray(rng.uniform(size=(xlen, )), self.dtype)
        vy = np.asarray(rng.uniform(size=(ylen, )), self.dtype)

        assert np.allclose(vx, f(1, vx, vy))
        assert np.allclose(vy + sum(range(200)), f(0, vx, vy))
    def test_select_proportional_to_weight(self):
        # Tests that multinomial_wo_replacement selects elements, on average,
        # proportional to the their probabilities

        th_rng = RandomStreams(12345)

        p = tensor.fmatrix()
        n = tensor.iscalar()
        m = th_rng.multinomial_wo_replacement(pvals=p, n=n)

        f = function([p, n], m, allow_input_downcast=True)

        n_elements = 100
        n_selected = 10
        mean_rtol = 0.0005
        np.random.seed(12345)
        pvals = np.random.randint(1, 100,
                                  (1, n_elements)).astype(config.floatX)
        pvals /= pvals.sum(1)
        avg_pvals = np.zeros((n_elements, ), dtype=config.floatX)

        for rep in range(10000):
            res = f(pvals, n_selected)
            res = np.squeeze(res)
            avg_pvals[res] += 1
        avg_pvals /= avg_pvals.sum()
        avg_diff = np.mean(abs(avg_pvals - pvals))
        assert avg_diff < mean_rtol
Пример #9
0
    def test_multiple_out(self):
        x1 = tensor.vector("x1", dtype=self.dtype)
        x2 = tensor.vector("x2", dtype=self.dtype)
        y1 = tensor.vector("y1", dtype=self.dtype)
        y2 = tensor.vector("y2", dtype=self.dtype)
        c = tensor.iscalar("c")
        z = ifelse(c, (x1, x2), (y1, y2))
        f = aesara.function([c, x1, x2, y1, y2], z, mode=self.mode)
        self.assertFunctionContains1(f, self.get_ifelse(2))

        ifnode = [
            x for x in f.maker.fgraph.toposort() if isinstance(x.op, IfElse)
        ][0]
        assert len(ifnode.outputs) == 2

        rng = np.random.RandomState(utt.fetch_seed())

        x1len = rng.randint(200)
        x2len = rng.randint(200)
        y1len = rng.randint(200)
        y2len = rng.randint(200)

        vx1 = np.asarray(rng.uniform(size=(x1len, )), self.dtype)
        vx2 = np.asarray(rng.uniform(size=(x2len, )), self.dtype)
        vy1 = np.asarray(rng.uniform(size=(y1len, )), self.dtype)
        vy2 = np.asarray(rng.uniform(size=(y2len, )), self.dtype)

        ovx1, ovx2 = f(1, vx1, vx2, vy1, vy2)
        ovy1, ovy2 = f(0, vx1, vx2, vy1, vy2)
        assert np.allclose(vx1, ovx1)
        assert np.allclose(vy1, ovy1)
        assert np.allclose(vx2, ovx2)
        assert np.allclose(vy2, ovy2)
Пример #10
0
    def test_multiple_out_grad(self):
        # Tests that we can compute the gradients through lazy if
        x1 = tensor.vector("x1")
        x2 = tensor.vector("x2")
        y1 = tensor.vector("y1")
        y2 = tensor.vector("y2")
        c = tensor.iscalar("c")
        z = ifelse(c, (x1, x2), (y1, y2))
        grads = tensor.grad(z[0].sum() + z[1].sum(), [x1, x2, y1, y2])

        f = aesara.function([c, x1, x2, y1, y2], grads)
        rng = np.random.RandomState(utt.fetch_seed())

        lens = [rng.randint(200) for i in range(4)]
        values = [
            np.asarray(rng.uniform(size=(l, )), aesara.config.floatX)
            for l in lens
        ]
        outs_1 = f(1, *values)
        assert all([x.shape[0] == y for x, y in zip(outs_1, lens)])
        assert np.all(outs_1[0] == 1.0)
        assert np.all(outs_1[1] == 1.0)
        assert np.all(outs_1[2] == 0.0)
        assert np.all(outs_1[3] == 0.0)

        outs_0 = f(0, *values)
        assert all([x.shape[0] == y for x, y in zip(outs_1, lens)])
        assert np.all(outs_0[0] == 0.0)
        assert np.all(outs_0[1] == 0.0)
        assert np.all(outs_0[2] == 1.0)
        assert np.all(outs_0[3] == 1.0)
Пример #11
0
    def test_mixed_dtype(self):
        x1 = tensor.vector("x1", dtype="int32")
        x2 = tensor.vector("x2", dtype=self.dtype)
        y1 = tensor.vector("y1", dtype="int32")
        y2 = tensor.vector("y2", dtype=self.dtype)
        c = tensor.iscalar("c")
        f = aesara.function([c, x1, x2, y1, y2],
                            ifelse(c, (x1, x2), (y1, y2)),
                            mode=self.mode)
        self.assertFunctionContains1(f, self.get_ifelse(2))
        rng = np.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx1 = np.asarray(rng.uniform(size=(xlen, )) * 3, "int32")
        vx2 = np.asarray(rng.uniform(size=(xlen, )), self.dtype)
        vy1 = np.asarray(rng.uniform(size=(ylen, )) * 3, "int32")
        vy2 = np.asarray(rng.uniform(size=(ylen, )), self.dtype)

        o1, o2 = f(1, vx1, vx2, vy1, vy2)
        assert np.allclose(vx1, o1)
        assert np.allclose(vx2, o2)

        o1, o2 = f(0, vx1, vx2, vy1, vy2)
        assert np.allclose(vy1, o1)
        assert np.allclose(vy2, o2)
Пример #12
0
    def test_grad_lazy_if(self):
        # Tests that we can compute the gradients through lazy if
        x = tensor.vector("x", dtype=self.dtype)
        y = tensor.vector("y", dtype=self.dtype)
        c = tensor.iscalar("c")
        z = ifelse(c, x, y)
        gx, gy = tensor.grad(z.sum(), [x, y])

        f = aesara.function(
            [c, x, y],
            [self.cast_output(gx), self.cast_output(gy)],
            mode=self.mode)
        # There is only 2 of the 3 ifelse that are moved on the GPU.
        # The one that stay on the CPU is for the shape.
        self.assertFunctionContains(f, self.get_ifelse(1), min=2, max=3)
        rng = np.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = np.asarray(rng.uniform(size=(xlen, )), self.dtype)
        vy = np.asarray(rng.uniform(size=(ylen, )), self.dtype)
        gx0, gy0 = f(1, vx, vy)
        assert np.allclose(gx0.shape, vx.shape)
        assert np.allclose(gy0.shape, vy.shape)
        assert np.all(np.asarray(gx0) == 1.0)
        assert np.all(np.asarray(gy0) == 0.0)

        gx0, gy0 = f(0, vx, vy)
        assert np.allclose(gx0.shape, vx.shape)
        assert np.allclose(gy0.shape, vy.shape)
        assert np.all(np.asarray(gx0) == 0.0)
        assert np.all(np.asarray(gy0) == 1.0)
Пример #13
0
    def setUp(self):
        extra1 = at.iscalar("extra1")
        extra1_ = np.array(0, dtype=extra1.dtype)
        extra1.dshape = tuple()
        extra1.dsize = 1

        val1 = at.vector("val1")
        val1_ = np.zeros(3, dtype=val1.dtype)
        val1.dshape = (3, )
        val1.dsize = 3

        val2 = at.matrix("val2")
        val2_ = np.zeros((2, 3), dtype=val2.dtype)
        val2.dshape = (2, 3)
        val2.dsize = 6

        self.val1, self.val1_ = val1, val1_
        self.val2, self.val2_ = val2, val2_
        self.extra1, self.extra1_ = extra1, extra1_

        self.cost = extra1 * val1.sum() + val2.sum()

        self.f_grad = ValueGradFunction([self.cost], [val1, val2],
                                        {extra1: extra1_},
                                        mode="FAST_COMPILE")
Пример #14
0
    def test_pushout2(self):
        x1 = tensor.scalar("x1")
        x2 = tensor.scalar("x2")
        y1 = tensor.scalar("y1")
        y2 = tensor.scalar("y2")
        w1 = tensor.scalar("w1")
        w2 = tensor.scalar("w2")
        c = tensor.iscalar("c")
        x, y = ifelse(c, (x1, y1), (x2, y2), name="f1")
        z = ifelse(x > y, w1, w2, name="f2")
        out = x * z * y

        f = aesara.function([x1, x2, y1, y2, w1, w2, c],
                            out,
                            allow_input_downcast=True)
        assert isinstance(f.maker.fgraph.toposort()[-1].op, IfElse)
        rng = np.random.RandomState(utt.fetch_seed())
        vx1 = rng.uniform()
        vx2 = rng.uniform()
        vy1 = rng.uniform()
        vy2 = rng.uniform()
        vw1 = rng.uniform()
        vw2 = rng.uniform()
        if vx1 > vy1:
            vw = vw1
        else:
            vw = vw2
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 1), vx1 * vy1 * vw)

        if vx2 > vy2:
            vw = vw1
        else:
            vw = vw2
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 0), vx2 * vy2 * vw)
Пример #15
0
    def test_copy_delete_updates(self):
        w = tt.iscalar("w")
        x = tt.fscalar("x")
        # SharedVariable for tests, one of them has update
        y = aesara.shared(value=1, name="y")
        z = aesara.shared(value=2, name="z")
        out = x + y + z

        # Test for different linkers
        # for mode in ["FAST_RUN","FAST_COMPILE"]:
        # second_time = False
        for mode in ["FAST_RUN", "FAST_COMPILE"]:
            ori = aesara.function([x], out, mode=mode, updates={z: z * 2})
            cpy = ori.copy(delete_updates=True)

            assert cpy(1)[0] == 4
            assert cpy(1)[0] == 4
            assert cpy(1)[0] == 4

        # Test if unused implicit and explicit inputs from delete_updates
        # are ignored as intended.
        for mode in ["FAST_RUN", "FAST_COMPILE"]:
            ori = aesara.function([x], x, mode=mode, updates={z: z * 2})
            cpy = ori.copy(delete_updates=True)

            ori = aesara.function([x, w], x, mode=mode, updates={z: z + w})
            cpy = ori.copy(delete_updates=True)
Пример #16
0
 def check(dtype, N, M_=None, k=0):
     # Aesara does not accept None as a tensor.
     # So we must use a real value.
     M = M_
     # Currently DebugMode does not support None as inputs even if this is
     # allowed.
     if M is None:
         M = N
     N_symb = tt.iscalar()
     M_symb = tt.iscalar()
     k_symb = tt.iscalar()
     out = tt.tri(N_symb, M_symb, k_symb, dtype=dtype) + np.array(1).astype(dtype)
     f = aesara.function([N_symb, M_symb, k_symb], out, mode=mode_with_gpu)
     result = np.asarray(f(N, M, k)) - np.array(1).astype(dtype)
     assert np.allclose(result, np.tri(N, M_, k, dtype=dtype))
     assert result.dtype == np.dtype(dtype)
     assert any([isinstance(node.op, GpuTri) for node in f.maker.fgraph.toposort()])
Пример #17
0
    def test_grad_cast_input(self):
        # Tests the gradient when both inputs are on the GPU.
        x = tensor.vector("x", dtype=self.dtype)
        y = tensor.vector("y", dtype=self.dtype)
        c = tensor.iscalar("c")
        z = ifelse(c, self.cast_output(x), self.cast_output(y))
        gx, gy = tensor.grad(z.sum(), [x, y])

        aesara.function([c, x, y], [gx, gy], mode=self.mode)
Пример #18
0
def test_record_mode_bad():
    # Like test_record_bad, but some events are recorded by the
    # aesara RecordMode, as is the event that triggers the mismatch
    # error.

    # Record a sequence of events
    output = StringIO()

    recorder = Record(file_object=output, replay=False)

    record_mode = RecordMode(recorder)

    i = iscalar()
    f = function([i], i, mode=record_mode, name="f")

    num_lines = 10

    for i in range(num_lines):
        recorder.handle_line(str(i) + "\n")
        f(i)

    # Make sure that the playback functionality doesn't raise any errors
    # when we repeat them
    output_value = output.getvalue()
    output = StringIO(output_value)

    playback_checker = Record(file_object=output, replay=True)

    playback_mode = RecordMode(playback_checker)

    i = iscalar()
    f = function([i], i, mode=playback_mode, name="f")

    for i in range(num_lines // 2):
        playback_checker.handle_line(str(i) + "\n")
        f(i)

    # Make sure a wrong event causes a MismatchError
    try:
        f(0)
    except MismatchError:
        return
    raise AssertionError("Failed to detect a mismatch.")
Пример #19
0
    def test_lazy_if_on_generics(self):
        x = aesara.generic()
        y = aesara.generic()
        c = tensor.iscalar("c")
        f = aesara.function([c, x, y], ifelse(c, x, y))

        vx = ["testX"]
        vy = ["testY"]
        assert f(1, vx, vy) == vx
        assert f(0, vx, vy) == vy
Пример #20
0
 def check_u(m, k=0):
     m_symb = tt.matrix(dtype=m.dtype)
     k_symb = tt.iscalar()
     f = aesara.function(
         [m_symb, k_symb], tt.triu(m_symb, k_symb), mode=mode_with_gpu
     )
     result = f(m, k)
     assert np.allclose(result, np.triu(m, k))
     assert result.dtype == np.dtype(dtype)
     assert any([isinstance(node.op, GpuTri) for node in f.maker.fgraph.toposort()])
Пример #21
0
    def test_remove_useless_inputs1(self):
        x = tensor.vector("x")
        y = tensor.vector("y")
        c = tensor.iscalar("c")
        z = ifelse(c, (x, x), (y, y))
        f = aesara.function([c, x, y], z)

        ifnode = [
            n for n in f.maker.fgraph.toposort() if isinstance(n.op, IfElse)
        ][0]
        assert len(ifnode.inputs) == 3
Пример #22
0
 def test_merge(self):
     x = tensor.vector("x")
     y = tensor.vector("y")
     c = tensor.iscalar("c")
     z1 = ifelse(c, x + 1, y + 1)
     z2 = ifelse(c, x + 2, y + 2)
     z = z1 + z2
     f = aesara.function([c, x, y], z)
     assert (len([
         n for n in f.maker.fgraph.toposort() if isinstance(n.op, IfElse)
     ]) == 1)
Пример #23
0
def test_scan_debugprint1():
    k = tensor.iscalar("k")
    A = tensor.dvector("A")

    # Symbolic description of the result
    result, updates = aesara.scan(
        fn=lambda prior_result, A: prior_result * A,
        outputs_info=tensor.ones_like(A),
        non_sequences=A,
        n_steps=k,
    )

    final_result = result[-1]
    output_str = aesara.printing.debugprint(final_result, file="str")
    lines = output_str.split("\n")

    expected_output = """Subtensor{int64} [id A] ''
     |Subtensor{int64::} [id B] ''
     | |for{cpu,scan_fn} [id C] ''
     | | |k [id D]
     | | |IncSubtensor{Set;:int64:} [id E] ''
     | | | |AllocEmpty{dtype='float64'} [id F] ''
     | | | | |Elemwise{add,no_inplace} [id G] ''
     | | | | | |k [id D]
     | | | | | |Subtensor{int64} [id H] ''
     | | | | |   |Shape [id I] ''
     | | | | |   | |Rebroadcast{0} [id J] ''
     | | | | |   |   |InplaceDimShuffle{x,0} [id K] ''
     | | | | |   |     |Elemwise{second,no_inplace} [id L] ''
     | | | | |   |       |A [id M]
     | | | | |   |       |InplaceDimShuffle{x} [id N] ''
     | | | | |   |         |TensorConstant{1.0} [id O]
     | | | | |   |Constant{0} [id P]
     | | | | |Subtensor{int64} [id Q] ''
     | | | |   |Shape [id R] ''
     | | | |   | |Rebroadcast{0} [id J] ''
     | | | |   |Constant{1} [id S]
     | | | |Rebroadcast{0} [id J] ''
     | | | |ScalarFromTensor [id T] ''
     | | |   |Subtensor{int64} [id H] ''
     | | |A [id M]
     | |Constant{1} [id U]
     |Constant{-1} [id V]

    Inner graphs of the scan ops:

    for{cpu,scan_fn} [id C] ''
     >Elemwise{mul,no_inplace} [id W] ''
     > |<TensorType(float64, vector)> [id X] -> [id E]
     > |A_copy [id Y] -> [id M]"""

    for truth, out in zip(expected_output.split("\n"), lines):
        assert truth.strip() == out.strip()
def test_n_samples_1():
    p = tensor.fmatrix()
    u = tensor.fvector()
    n = tensor.iscalar()
    m = multinomial.MultinomialFromUniform("auto")(p, u, n)

    f = function([p, u, n], m, allow_input_downcast=True)

    np.random.seed(12345)
    for i in [1, 5, 10, 100, 1000, 10000]:
        uni = np.random.rand(2 * i).astype(config.floatX)
        res = f([[1.0, 0.0], [0.0, 1.0]], uni, i)
        utt.assert_allclose(res, [[i * 1.0, 0.0], [0.0, i * 1.0]])
Пример #25
0
def test_cpu_contiguous():
    a = tt.fmatrix("a")
    i = tt.iscalar("i")
    a_val = np.asarray(np.random.rand(4, 5), dtype="float32")
    f = aesara.function([a, i], cpu_contiguous(a.reshape((5, 4))[::i]))
    topo = f.maker.fgraph.toposort()
    assert any([isinstance(node.op, CpuContiguous) for node in topo])
    assert f(a_val, 1).flags["C_CONTIGUOUS"]
    assert f(a_val, 2).flags["C_CONTIGUOUS"]
    assert f(a_val, 3).flags["C_CONTIGUOUS"]
    # Test the grad:

    utt.verify_grad(cpu_contiguous, [np.random.rand(5, 7, 2)])
Пример #26
0
    def test_remove_useless_inputs2(self):
        x1 = tensor.vector("x1")
        x2 = tensor.vector("x2")
        y1 = tensor.vector("y1")
        y2 = tensor.vector("y2")
        c = tensor.iscalar("c")
        z = ifelse(c, (x1, x1, x1, x2, x2), (y1, y1, y2, y2, y2))
        f = aesara.function([c, x1, x2, y1, y2], z)

        ifnode = [
            x for x in f.maker.fgraph.toposort() if isinstance(x.op, IfElse)
        ][0]
        assert len(ifnode.outputs) == 3
Пример #27
0
def test_gpu_contiguous():
    a = tt.fmatrix("a")
    i = tt.iscalar("i")
    a_val = np.asarray(np.random.rand(4, 5), dtype="float32")
    # The reshape is needed otherwise we make the subtensor on the CPU
    # to transfer less data.
    f = aesara.function(
        [a, i], gpu_contiguous(a.reshape((5, 4))[::i]), mode=mode_with_gpu
    )
    topo = f.maker.fgraph.toposort()
    assert any([isinstance(node.op, GpuSubtensor) for node in topo])
    assert any([isinstance(node.op, GpuContiguous) for node in topo])
    assert f(a_val, 1).flags.c_contiguous
    assert f(a_val, 2).flags.c_contiguous
    assert f(a_val, 2).flags.c_contiguous
def test_local_alloc_dimshuffle():

    alloc_dimshuffle = out2in(local_alloc_dimshuffle)

    x = tensor.vector("x")
    m = tensor.iscalar("m")

    y = x.dimshuffle("x", 0)
    out = tensor.alloc(y, m, 1, x.shape[0])

    g = FunctionGraph([x, m], [out])
    alloc_dimshuffle(g)

    topo = g.toposort()
    assert any([not isinstance(x, DimShuffle) for x in topo])
Пример #29
0
def test_record_mode_good():
    # Like test_record_good, but some events are recorded by the
    # aesara RecordMode. We don't attempt to check the
    # exact string value of the record in this case.

    # Record a sequence of events
    output = StringIO()

    recorder = Record(file_object=output, replay=False)

    record_mode = RecordMode(recorder)

    i = iscalar()
    f = function([i], i, mode=record_mode, name="f")

    num_lines = 10

    for i in range(num_lines):
        recorder.handle_line(str(i) + "\n")
        f(i)

    # Make sure that the playback functionality doesn't raise any errors
    # when we repeat them
    output_value = output.getvalue()
    output = StringIO(output_value)

    playback_checker = Record(file_object=output, replay=True)

    playback_mode = RecordMode(playback_checker)

    i = iscalar()
    f = function([i], i, mode=playback_mode, name="f")

    for i in range(num_lines):
        playback_checker.handle_line(str(i) + "\n")
        f(i)
Пример #30
0
def test_functions():
    xvals = list(map(np.atleast_1d, [0.01, 0.1, 2, 100, 10000]))

    x = aet.dvector("x")
    x.tag.test_value = xvals[0]

    p = aet.iscalar("p")
    p.tag.test_value = 1

    gammaln = function([x], ps.gammaln(x))
    psi = function([x], ps.psi(x))
    function([x, p], ps.multigammaln(x, p))
    for x in xvals:
        check_vals(gammaln, ss.gammaln, x)
    for x in xvals[1:]:
        check_vals(psi, ss.psi, x)