def wbWorkflow(): # Nodes warp = applyTransformNode(name='warpBraintoFMRI', transform='nac2fmri') mask = maskNode(name='wholeBrainMask', fileName='wholeBrainMask.nii', low=0.5, high=1.0, flags=['largest']) avg = afninodes.maskavenode('AFNI_1D', name='afni3DmaskAve_whole') # Pipeline wb = pipe.Workflow(name='wb') wb.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wb
def gmWorkflow(): # Nodes warp = applyTransformNode(name='warpGMtoFMRI', transform='t12fmri') mask = maskNode(name='grmMask', fileName='grmMask.nii', low=0.99, high=1.0) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_grm') # Pipeline gm = pipe.Workflow(name='gm') gm.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return gm
def wmWorkflow(): # Nodes warp = applyTransformNode(name='warpWMtoFMRI', transform='t12fmri') mask = maskNode(name='wmMask', fileName='whiteMatterMask.nii', low=0.99, high=1.0, flags=['erode']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_wm') # Pipeline wm = pipe.Workflow(name='wm') wm.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wm
def csfWorkflow(): # Nodes warp = applyTransformNode(name='warpCSFtoFMRI', transform='nac2fmri') mask = maskNode(name='csfMask', fileName='csfMask.nii', low=3, high=42, flags=['binary']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_csf') # Pipeline csf = pipe.Workflow(name='csf') csf.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return csf
def gmWorkflow(): # Nodes warp = applyTransformNode(name='warpGMtoFMRI', transform='t12fmri') mask = maskNode(name='grmMask', fileName='grmMask.nii', low=0.99, high=1.0) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_grm') # Pipeline gm = pipe.Workflow(name='gm') gm.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return gm
def wbWorkflow(): # Nodes warp = applyTransformNode(name='warpBraintoFMRI', transform='nac2fmri') mask = maskNode(name='wholeBrainMask', fileName='wholeBrainMask.nii', low=0.5, high=1.0, flags=['largest']) avg = afninodes.maskavenode('AFNI_1D', name='afni3DmaskAve_whole') # Pipeline wb = pipe.Workflow(name='wb') wb.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wb
def wmWorkflow(): # Nodes warp = applyTransformNode(name='warpWMtoFMRI', transform='t12fmri') mask = maskNode(name='wmMask', fileName='whiteMatterMask.nii', low=0.99, high=1.0, flags=['erode']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_wm') # Pipeline wm = pipe.Workflow(name='wm') wm.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wm
def csfWorkflow(): # Nodes warp = applyTransformNode(name='warpCSFtoFMRI', transform='nac2fmri') mask = maskNode(name='csfMask', fileName='csfMask.nii', low=3, high=42, flags=['binary']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_csf') # Pipeline csf = pipe.Workflow(name='csf') csf.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return csf
def pipeline(args): if args['debug']: config.enable_debug_mode() config.update_config({'logging': {'log_directory':makeSupportDir(args['name'], "logs")}}) logging.update_logging(config) # CONSTANTS sessionID = args['session'] outputType = args['format'].upper() fOutputType = args['freesurfer'] preprocessOn = args['preprocess'] maskGM = args['maskgm'] maskWholeBrain = args['maskwb'] maskWhiteMatterFromSeeds = args['maskseeds'] # print args['name'] t1_experiment = "20141001_PREDICTHD_long_Results" #"20130729_PREDICT_Results" atlasFile = os.path.abspath(os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_t1.nii.gz")) wholeBrainFile = os.path.abspath(os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_brain.nii.gz")) atlasLabel = os.path.abspath(os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_nac_labels.nii.gz")) resampleResolution = (2.0, 2.0, 2.0) downsampledfilename = 'downsampled_atlas.nii.gz' master = pipe.Workflow(name=args['name'] + "_CACHE") master.base_dir = os.path.abspath("/Shared/sinapse/CACHE") sessions = pipe.Node(interface=IdentityInterface(fields=['session_id']), name='sessionIDs') sessions.iterables = ('session_id', sessionID) downsampleAtlas = pipe.Node(interface=Function(function=resampleImage, input_names=['inputVolume', 'outputVolume', 'resolution'], output_names=['outputVolume']), name="downsampleAtlas") downsampleAtlas.inputs.inputVolume = atlasFile downsampleAtlas.inputs.outputVolume = downsampledfilename downsampleAtlas.inputs.resolution = [int(x) for x in resampleResolution] # HACK: Remove node from pipeline until Nipype/AFNI file copy issue is resolved # fmri_DataSink = pipe.Node(interface=DataSink(), name="fmri_DataSink") # fmri_DataSink.overwrite = REWRITE_DATASINKS # Output to: /Shared/paulsen/Experiments/YYYYMMDD_<experiment>_Results/fmri # fmri_DataSink.inputs.base_directory = os.path.join(master.base_dir, RESULTS_DIR, 'fmri') # fmri_DataSink.inputs.substitutions = [('to_3D_out+orig', 'to3D')] # fmri_DataSink.inputs.parameterization = False # # master.connect([(sessions, fmri_DataSink, [('session_id', 'container')])]) # END HACK registration = registrationWorkflow.workflow(t1_experiment, outputType, name="registration_wkfl") master.connect([(sessions, registration, [('session_id', "inputs.session_id")])]) detrend = afninodes.detrendnode(outputType, 'afni3Ddetrend') # define grabber site = "*" subject = "*" if preprocessOn: grabber = dataio.iowaGrabber(t1_experiment, site, subject, maskGM, maskWholeBrain) master.connect([(sessions, grabber, [('session_id', 'session_id')]), (grabber, registration, [('t1_File', 'inputs.t1')])]) # Why isn't preprocessWorkflow.workflow() used instead? It would avoid most of the nuisance connections here... preprocessing = preprocessWorkflow.prepWorkflow(skipCount=6, outputType=outputType) name = args.pop('name') # HACK: prevent name conflict with nuisance workflow nuisance = nuisanceWorkflow.workflow(outputType=outputType, **args) args['name'] = name # END HACK master.connect([(grabber, preprocessing, [('fmri_dicom_dir', 'to_3D.infolder'), ('fmri_dicom_dir', 'formatFMRINode.dicomDirectory')]), (grabber, nuisance, [('whmFile', 'wm.warpWMtoFMRI.input_image')]), (preprocessing, registration, [('merge.out_file', 'inputs.fmri'), # 7 ('automask.out_file', 'tstat.mask_file')]), # *optional* (registration, nuisance, [('outputs.fmri_reference', 'csf.warpCSFtoFMRI.reference_image'), # CSF ('outputs.nac2fmri_list', 'csf.warpCSFtoFMRI.transforms'), ('outputs.fmri_reference', 'wm.warpWMtoFMRI.reference_image'), # WM ('outputs.t12fmri_list', 'wm.warpWMtoFMRI.transforms')]), ]) warpCSFtoFMRInode = nuisance.get_node('csf').get_node('warpCSFtoFMRI') warpCSFtoFMRInode.inputs.input_image = atlasFile if maskGM: master.connect([(grabber, nuisance, [('gryFile', 'gm.warpGMtoFMRI.input_image')]), (registration, nuisance, [('outputs.fmri_reference', 'gm.warpGMtoFMRI.reference_image'), ('outputs.t12fmri_list', 'gm.warpGMtoFMRI.transforms')]), (preprocessing, nuisance, [('calc.out_file', 'gm.afni3DmaskAve_grm.in_file'), ('volreg.oned_file', 'afni3Ddeconvolve.stim_file_4')])]) elif maskWholeBrain: master.connect([(registration, nuisance, [('outputs.fmri_reference', 'wb.warpBraintoFMRI.reference_image'), ('outputs.nac2fmri_list', 'wb.warpBraintoFMRI.transforms')]), (preprocessing, nuisance, [('calc.out_file', 'wb.afni3DmaskAve_whole.in_file'), ('volreg.oned_file', 'afni3Ddeconvolve.stim_file_4')])]) warpBraintoFMRInode = nuisance.get_node('wb').get_node('warpBraintoFMRI') warpBraintoFMRInode.inputs.input_image= wholeBrainFile else: master.connect([(preprocessing, nuisance, [('volreg.oned_file', 'afni3Ddeconvolve.stim_file_3')])]) master.connect([(preprocessing, nuisance, [('calc.out_file', 'wm.afni3DmaskAve_wm.in_file'), ('calc.out_file', 'csf.afni3DmaskAve_csf.in_file'), ('calc.out_file', 'afni3Ddeconvolve.in_file')]), (nuisance, detrend, [('afni3Ddeconvolve.out_errts', 'in_file')])]) # 13 else: cleveland_grabber = dataio.clevelandGrabber() grabber = dataio.autoworkupGrabber(t1_experiment, site, subject) converter = pipe.Node(interface=Copy(), name='converter') # Convert ANALYZE to AFNI master.connect([(sessions, grabber, [('session_id', 'session_id')]), (grabber, registration, [('t1_File', 'inputs.t1')]), (sessions, cleveland_grabber, [('session_id', 'session_id')]), (cleveland_grabber, converter, [('fmriHdr', 'in_file')]), (converter, registration, [('out_file', 'inputs.fmri')]), (converter, detrend, [('out_file', 'in_file')]), # in fMRI_space ]) t1_wf = registrationWorkflow.t1Workflow() babc_wf = registrationWorkflow.babcWorkflow() # HACK: No EPI # epi_wf = registrationWorkflow.epiWorkflow() lb_wf = registrationWorkflow.labelWorkflow() seed_wf = registrationWorkflow.seedWorkflow() bandpass = afninodes.fouriernode(outputType, 'fourier') # Fourier is the last NIFTI file format in the AFNI pipeline master.connect([(detrend, bandpass, [('out_file', 'in_file')]), # Per Dawei, bandpass after running 3dDetrend (grabber, t1_wf, [('t1_File', 'warpT1toFMRI.input_image')]), (registration, t1_wf, [('outputs.fmri_reference', 'warpT1toFMRI.reference_image'), # T1 ('outputs.t12fmri_list', 'warpT1toFMRI.transforms')]), (grabber, babc_wf, [('csfFile', 'warpBABCtoFMRI.input_image')]), (registration, babc_wf, [('outputs.fmri_reference', 'warpBABCtoFMRI.reference_image'), # Labels ('outputs.t12fmri_list', 'warpBABCtoFMRI.transforms')]), # HACK: No EPI # (downsampleAtlas, epi_wf, [('outputVolume', 'warpEPItoNAC.reference_image')]), # (registration, epi_wf, [('outputs.fmri2nac_list', 'warpEPItoNAC.transforms')]), # (bandpass, epi_wf, [('out_file', 'warpEPItoNAC.input_image')]), # END HACK (downsampleAtlas, lb_wf, [('outputVolume', 'warpLabeltoNAC.reference_image')]), (registration, lb_wf, [('outputs.fmri2nac_list', 'warpLabeltoNAC.transforms')]), (t1_wf, seed_wf, [('warpT1toFMRI.output_image', 'warpSeedtoFMRI.reference_image')]), (registration, seed_wf, [('outputs.nac2fmri_list', 'warpSeedtoFMRI.transforms')]), ]) renameMasks = pipe.Node(interface=Rename(format_string='%(label)s_mask'), name='renameMasksAtlas') renameMasks.inputs.keep_ext = True atlas_DataSink = dataio.atlasSink(base_directory=master.base_dir, **args) master.connect([(renameMasks, atlas_DataSink, [('out_file', 'Atlas')]), (downsampleAtlas, atlas_DataSink, [('outputVolume', 'Atlas.@resampled')]), ]) renameMasks2 = pipe.Node(interface=Rename(format_string='%(session)s_%(label)s_mask'), name='renameMasksFMRI') renameMasks2.inputs.keep_ext = True master.connect(sessions, 'session_id', renameMasks2, 'session') clipSeedWithVentriclesNode = pipe.Node(interface=Function(function=clipSeedWithVentricles, input_names=['seed', 'label', 'outfile'], output_names=['clipped_seed_fn']), name='clipSeedWithVentriclesNode') clipSeedWithVentriclesNode.inputs.outfile = "clipped_seed.nii.gz" master.connect(seed_wf, 'warpSeedtoFMRI.output_image', clipSeedWithVentriclesNode, 'seed') master.connect(babc_wf, 'warpBABCtoFMRI.output_image', clipSeedWithVentriclesNode, 'label') if not maskWhiteMatterFromSeeds: master.connect(clipSeedWithVentriclesNode, 'clipped_seed_fn', renameMasks2, 'in_file') else: clipSeedWithWhiteMatterNode = pipe.Node(interface=Function(function=clipSeedWithWhiteMatter, input_names=['seed', 'mask', 'outfile'], output_names=['outfile']), name='clipSeedWithWhiteMatterNode') clipSeedWithWhiteMatterNode.inputs.outfile = 'clipped_wm_seed.nii.gz' master.connect(babc_wf, 'warpBABCtoFMRI.output_image', clipSeedWithWhiteMatterNode, 'mask') master.connect(clipSeedWithVentriclesNode, 'clipped_seed_fn', clipSeedWithWhiteMatterNode, 'seed') master.connect(clipSeedWithWhiteMatterNode, 'outfile', renameMasks2, 'in_file') # Labels are iterated over, so we need a seperate datasink to avoid overwriting any preprocessing # results when the labels are iterated (e.g. To3d output) # Write out to: /Shared/sinapse/CACHE/YYYYMMDD_<experiment>_Results/<SESSION> fmri_label_DataSink = dataio.fmriSink(master.base_dir, **args) master.connect(sessions, 'session_id', fmri_label_DataSink, 'container') master.connect(renameMasks2, 'out_file', fmri_label_DataSink, 'masks') master.connect(bandpass,'out_file', fmri_label_DataSink, 'masks.@bandpass') roiMedian = afninodes.maskavenode('AFNI_1D', 'afni_roiMedian', '-mrange 1 1') master.connect(renameMasks2, 'out_file', roiMedian, 'mask') master.connect(bandpass, 'out_file', roiMedian, 'in_file') correlate = afninodes.fimnode('Correlation', 'afni_correlate') master.connect(roiMedian, 'out_file', correlate, 'ideal_file') master.connect(bandpass, 'out_file', correlate, 'in_file') regionLogCalc = afninodes.logcalcnode(outputType, 'afni_regionLogCalc') master.connect(correlate, 'out_file', regionLogCalc, 'in_file_a') renameZscore = pipe.Node(interface=Rename(format_string="%(session)s_%(label)s_zscore"), name='renameZscore') renameZscore.inputs.keep_ext = True master.connect(sessions, 'session_id', renameZscore, 'session') master.connect(regionLogCalc, 'out_file', renameZscore, 'in_file') master.connect(renameZscore, 'out_file', fmri_label_DataSink, 'zscores') master.connect(t1_wf, 'warpT1toFMRI.output_image', fmri_label_DataSink, 'zscores.@t1Underlay') # Move z values back into NAC atlas space # master.connect(downsampleAtlas, 'outputVolume', lb_wf, 'warpLabeltoNAC.reference_image') master.connect(regionLogCalc, 'out_file', lb_wf, 'warpLabeltoNAC.input_image') renameZscore2 = pipe.Node(interface=Rename(format_string="%(session)s_%(label)s_result"), name='renameZscore2') renameZscore2.inputs.keep_ext = True master.connect(sessions, 'session_id', renameZscore2, 'session') master.connect(lb_wf, 'warpLabeltoNAC.output_image', renameZscore2, 'in_file') master.connect(renameZscore2, 'out_file', atlas_DataSink, 'Atlas.@zscore') # Connect seed subworkflow seedSubflow = seedWorkflow.workflow(args['seeds'], outputType='NIFTI_GZ', name='seed_wkfl') master.connect([(downsampleAtlas, seedSubflow, [('outputVolume', 'afni3Dcalc_seeds.in_file_a')]), (seedSubflow, renameMasks, [('afni3Dcalc_seeds.out_file', 'in_file'), ('selectLabel.out', 'label')]), (seedSubflow, renameMasks2, [('selectLabel.out', 'label')]), (seedSubflow, renameZscore, [('selectLabel.out', 'label')]), (seedSubflow, renameZscore2, [('selectLabel.out', 'label')]), (seedSubflow, seed_wf, [('afni3Dcalc_seeds.out_file', 'warpSeedtoFMRI.input_image')]) ]) imageDir = makeSupportDir(args['name'], "images") if args['plot']: registration.write_graph(dotfilename=os.path.join(imageDir, 'register.dot'), graph2use='orig', format='png', simple_form=False) if preprocessOn: preprocessing.write_graph(dotfilename=os.path.join(imageDir, 'preprocess.dot'), graph2use='orig', format='png', simple_form=False) nuisance.write_graph(dotfilename=os.path.join(imageDir, 'nuisance.dot'), graph2use='orig', format='png', simple_form=False) seedSubflow.write_graph(dotfilename=os.path.join(imageDir, 'seed.dot'), graph2use='orig', format='png', simple_form=False) master.write_graph(dotfilename=os.path.join(imageDir, 'master.dot'), graph2use="orig", format='png', simple_form=False) elif args['debug']: try: master.run(updatehash=True) # Run restingState on the all threads # Setup environment for CPU load balancing of ITK based programs. # -------- # import multiprocessing # total_CPUS = 10 # multiprocessing.cpu_count() # master.run(plugin='MultiProc', plugin_args={'n_proc': total_CPUS}) #, updatehash=True) # -------- # Run restingState on the local cluster # master.run(plugin='SGE', plugin_args={'template': os.path.join(os.getcwd(), 'ENV/bin/activate'), # 'qsub_args': '-S /bin/bash -cwd'}) #, updatehash=True) except: pass master.name = "master" # HACK: Bug in Graphviz for nodes beginning with numbers master.write_graph(dotfilename=os.path.join(imageDir, 'debug_hier.dot'), graph2use="colored", format='png') master.write_graph(dotfilename=os.path.join(imageDir, 'debug_orig.dot'), graph2use="flat", format='png') else: import multiprocessing total_CPUS = multiprocessing.cpu_count() master.run(plugin='MultiProc', plugin_args={'n_proc': total_CPUS}) #, updatehash=True) return 0
def pipeline(args): if args['debug']: config.enable_debug_mode() config.update_config( {'logging': { 'log_directory': makeSupportDir(args['name'], "logs") }}) logging.update_logging(config) # CONSTANTS sessionID = args['session'] outputType = args['format'].upper() fOutputType = args['freesurfer'] preprocessOn = args['preprocess'] maskGM = args['maskgm'] maskWholeBrain = args['maskwb'] maskWhiteMatterFromSeeds = args['maskseeds'] # print args['name'] t1_experiment = "20141001_PREDICTHD_long_Results" #"20130729_PREDICT_Results" atlasFile = os.path.abspath( os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_t1.nii.gz")) wholeBrainFile = os.path.abspath( os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_brain.nii.gz")) atlasLabel = os.path.abspath( os.path.join(os.path.dirname(__file__), "ReferenceAtlas", "template_nac_labels.nii.gz")) resampleResolution = (2.0, 2.0, 2.0) downsampledfilename = 'downsampled_atlas.nii.gz' master = pipe.Workflow(name=args['name'] + "_CACHE") master.base_dir = os.path.abspath("/Shared/sinapse/CACHE") sessions = pipe.Node(interface=IdentityInterface(fields=['session_id']), name='sessionIDs') sessions.iterables = ('session_id', sessionID) downsampleAtlas = pipe.Node(interface=Function( function=resampleImage, input_names=['inputVolume', 'outputVolume', 'resolution'], output_names=['outputVolume']), name="downsampleAtlas") downsampleAtlas.inputs.inputVolume = atlasFile downsampleAtlas.inputs.outputVolume = downsampledfilename downsampleAtlas.inputs.resolution = [int(x) for x in resampleResolution] # HACK: Remove node from pipeline until Nipype/AFNI file copy issue is resolved # fmri_DataSink = pipe.Node(interface=DataSink(), name="fmri_DataSink") # fmri_DataSink.overwrite = REWRITE_DATASINKS # Output to: /Shared/paulsen/Experiments/YYYYMMDD_<experiment>_Results/fmri # fmri_DataSink.inputs.base_directory = os.path.join(master.base_dir, RESULTS_DIR, 'fmri') # fmri_DataSink.inputs.substitutions = [('to_3D_out+orig', 'to3D')] # fmri_DataSink.inputs.parameterization = False # # master.connect([(sessions, fmri_DataSink, [('session_id', 'container')])]) # END HACK registration = registrationWorkflow.workflow(t1_experiment, outputType, name="registration_wkfl") master.connect([(sessions, registration, [('session_id', "inputs.session_id")])]) detrend = afninodes.detrendnode(outputType, 'afni3Ddetrend') # define grabber site = "*" subject = "*" if preprocessOn: grabber = dataio.iowaGrabber(t1_experiment, site, subject, maskGM, maskWholeBrain) master.connect([(sessions, grabber, [('session_id', 'session_id')]), (grabber, registration, [('t1_File', 'inputs.t1')])]) # Why isn't preprocessWorkflow.workflow() used instead? It would avoid most of the nuisance connections here... preprocessing = preprocessWorkflow.prepWorkflow(skipCount=6, outputType=outputType) name = args.pop( 'name') # HACK: prevent name conflict with nuisance workflow nuisance = nuisanceWorkflow.workflow(outputType=outputType, **args) args['name'] = name # END HACK master.connect([ (grabber, preprocessing, [('fmri_dicom_dir', 'to_3D.infolder'), ('fmri_dicom_dir', 'formatFMRINode.dicomDirectory')]), (grabber, nuisance, [('whmFile', 'wm.warpWMtoFMRI.input_image')]), ( preprocessing, registration, [ ('merge.out_file', 'inputs.fmri'), # 7 ('automask.out_file', 'tstat.mask_file') ]), # *optional* ( registration, nuisance, [ ('outputs.fmri_reference', 'csf.warpCSFtoFMRI.reference_image'), # CSF ('outputs.nac2fmri_list', 'csf.warpCSFtoFMRI.transforms'), ('outputs.fmri_reference', 'wm.warpWMtoFMRI.reference_image'), # WM ('outputs.t12fmri_list', 'wm.warpWMtoFMRI.transforms') ]), ]) warpCSFtoFMRInode = nuisance.get_node('csf').get_node('warpCSFtoFMRI') warpCSFtoFMRInode.inputs.input_image = atlasFile if maskGM: master.connect([ (grabber, nuisance, [('gryFile', 'gm.warpGMtoFMRI.input_image') ]), (registration, nuisance, [('outputs.fmri_reference', 'gm.warpGMtoFMRI.reference_image'), ('outputs.t12fmri_list', 'gm.warpGMtoFMRI.transforms')]), (preprocessing, nuisance, [('calc.out_file', 'gm.afni3DmaskAve_grm.in_file'), ('volreg.oned_file', 'afni3Ddeconvolve.stim_file_4')]) ]) elif maskWholeBrain: master.connect([ (registration, nuisance, [('outputs.fmri_reference', 'wb.warpBraintoFMRI.reference_image'), ('outputs.nac2fmri_list', 'wb.warpBraintoFMRI.transforms')]), (preprocessing, nuisance, [('calc.out_file', 'wb.afni3DmaskAve_whole.in_file'), ('volreg.oned_file', 'afni3Ddeconvolve.stim_file_4')]) ]) warpBraintoFMRInode = nuisance.get_node('wb').get_node( 'warpBraintoFMRI') warpBraintoFMRInode.inputs.input_image = wholeBrainFile else: master.connect([(preprocessing, nuisance, [ ('volreg.oned_file', 'afni3Ddeconvolve.stim_file_3') ])]) master.connect([(preprocessing, nuisance, [('calc.out_file', 'wm.afni3DmaskAve_wm.in_file'), ('calc.out_file', 'csf.afni3DmaskAve_csf.in_file'), ('calc.out_file', 'afni3Ddeconvolve.in_file')]), (nuisance, detrend, [('afni3Ddeconvolve.out_errts', 'in_file')])]) # 13 else: cleveland_grabber = dataio.clevelandGrabber() grabber = dataio.autoworkupGrabber(t1_experiment, site, subject) converter = pipe.Node(interface=Copy(), name='converter') # Convert ANALYZE to AFNI master.connect([ (sessions, grabber, [('session_id', 'session_id')]), (grabber, registration, [('t1_File', 'inputs.t1')]), (sessions, cleveland_grabber, [('session_id', 'session_id')]), (cleveland_grabber, converter, [('fmriHdr', 'in_file')]), (converter, registration, [('out_file', 'inputs.fmri')]), (converter, detrend, [('out_file', 'in_file')]), # in fMRI_space ]) t1_wf = registrationWorkflow.t1Workflow() babc_wf = registrationWorkflow.babcWorkflow() # HACK: No EPI # epi_wf = registrationWorkflow.epiWorkflow() lb_wf = registrationWorkflow.labelWorkflow() seed_wf = registrationWorkflow.seedWorkflow() bandpass = afninodes.fouriernode( outputType, 'fourier' ) # Fourier is the last NIFTI file format in the AFNI pipeline master.connect([ (detrend, bandpass, [('out_file', 'in_file') ]), # Per Dawei, bandpass after running 3dDetrend (grabber, t1_wf, [('t1_File', 'warpT1toFMRI.input_image')]), ( registration, t1_wf, [ ('outputs.fmri_reference', 'warpT1toFMRI.reference_image'), # T1 ('outputs.t12fmri_list', 'warpT1toFMRI.transforms') ]), (grabber, babc_wf, [('csfFile', 'warpBABCtoFMRI.input_image')]), ( registration, babc_wf, [ ('outputs.fmri_reference', 'warpBABCtoFMRI.reference_image'), # Labels ('outputs.t12fmri_list', 'warpBABCtoFMRI.transforms') ]), # HACK: No EPI # (downsampleAtlas, epi_wf, [('outputVolume', 'warpEPItoNAC.reference_image')]), # (registration, epi_wf, [('outputs.fmri2nac_list', 'warpEPItoNAC.transforms')]), # (bandpass, epi_wf, [('out_file', 'warpEPItoNAC.input_image')]), # END HACK (downsampleAtlas, lb_wf, [('outputVolume', 'warpLabeltoNAC.reference_image')]), (registration, lb_wf, [('outputs.fmri2nac_list', 'warpLabeltoNAC.transforms')]), (t1_wf, seed_wf, [('warpT1toFMRI.output_image', 'warpSeedtoFMRI.reference_image')]), (registration, seed_wf, [('outputs.nac2fmri_list', 'warpSeedtoFMRI.transforms')]), ]) renameMasks = pipe.Node(interface=Rename(format_string='%(label)s_mask'), name='renameMasksAtlas') renameMasks.inputs.keep_ext = True atlas_DataSink = dataio.atlasSink(base_directory=master.base_dir, **args) master.connect([ (renameMasks, atlas_DataSink, [('out_file', 'Atlas')]), (downsampleAtlas, atlas_DataSink, [('outputVolume', 'Atlas.@resampled') ]), ]) renameMasks2 = pipe.Node( interface=Rename(format_string='%(session)s_%(label)s_mask'), name='renameMasksFMRI') renameMasks2.inputs.keep_ext = True master.connect(sessions, 'session_id', renameMasks2, 'session') clipSeedWithVentriclesNode = pipe.Node(interface=Function( function=clipSeedWithVentricles, input_names=['seed', 'label', 'outfile'], output_names=['clipped_seed_fn']), name='clipSeedWithVentriclesNode') clipSeedWithVentriclesNode.inputs.outfile = "clipped_seed.nii.gz" master.connect(seed_wf, 'warpSeedtoFMRI.output_image', clipSeedWithVentriclesNode, 'seed') master.connect(babc_wf, 'warpBABCtoFMRI.output_image', clipSeedWithVentriclesNode, 'label') if not maskWhiteMatterFromSeeds: master.connect(clipSeedWithVentriclesNode, 'clipped_seed_fn', renameMasks2, 'in_file') else: clipSeedWithWhiteMatterNode = pipe.Node( interface=Function(function=clipSeedWithWhiteMatter, input_names=['seed', 'mask', 'outfile'], output_names=['outfile']), name='clipSeedWithWhiteMatterNode') clipSeedWithWhiteMatterNode.inputs.outfile = 'clipped_wm_seed.nii.gz' master.connect(babc_wf, 'warpBABCtoFMRI.output_image', clipSeedWithWhiteMatterNode, 'mask') master.connect(clipSeedWithVentriclesNode, 'clipped_seed_fn', clipSeedWithWhiteMatterNode, 'seed') master.connect(clipSeedWithWhiteMatterNode, 'outfile', renameMasks2, 'in_file') # Labels are iterated over, so we need a seperate datasink to avoid overwriting any preprocessing # results when the labels are iterated (e.g. To3d output) # Write out to: /Shared/sinapse/CACHE/YYYYMMDD_<experiment>_Results/<SESSION> fmri_label_DataSink = dataio.fmriSink(master.base_dir, **args) master.connect(sessions, 'session_id', fmri_label_DataSink, 'container') master.connect(renameMasks2, 'out_file', fmri_label_DataSink, 'masks') master.connect(bandpass, 'out_file', fmri_label_DataSink, 'masks.@bandpass') roiMedian = afninodes.maskavenode('AFNI_1D', 'afni_roiMedian', '-mrange 1 1') master.connect(renameMasks2, 'out_file', roiMedian, 'mask') master.connect(bandpass, 'out_file', roiMedian, 'in_file') correlate = afninodes.fimnode('Correlation', 'afni_correlate') master.connect(roiMedian, 'out_file', correlate, 'ideal_file') master.connect(bandpass, 'out_file', correlate, 'in_file') regionLogCalc = afninodes.logcalcnode(outputType, 'afni_regionLogCalc') master.connect(correlate, 'out_file', regionLogCalc, 'in_file_a') renameZscore = pipe.Node( interface=Rename(format_string="%(session)s_%(label)s_zscore"), name='renameZscore') renameZscore.inputs.keep_ext = True master.connect(sessions, 'session_id', renameZscore, 'session') master.connect(regionLogCalc, 'out_file', renameZscore, 'in_file') master.connect(renameZscore, 'out_file', fmri_label_DataSink, 'zscores') master.connect(t1_wf, 'warpT1toFMRI.output_image', fmri_label_DataSink, 'zscores.@t1Underlay') # Move z values back into NAC atlas space # master.connect(downsampleAtlas, 'outputVolume', lb_wf, 'warpLabeltoNAC.reference_image') master.connect(regionLogCalc, 'out_file', lb_wf, 'warpLabeltoNAC.input_image') renameZscore2 = pipe.Node( interface=Rename(format_string="%(session)s_%(label)s_result"), name='renameZscore2') renameZscore2.inputs.keep_ext = True master.connect(sessions, 'session_id', renameZscore2, 'session') master.connect(lb_wf, 'warpLabeltoNAC.output_image', renameZscore2, 'in_file') master.connect(renameZscore2, 'out_file', atlas_DataSink, 'Atlas.@zscore') # Connect seed subworkflow seedSubflow = seedWorkflow.workflow(args['seeds'], outputType='NIFTI_GZ', name='seed_wkfl') master.connect([ (downsampleAtlas, seedSubflow, [('outputVolume', 'afni3Dcalc_seeds.in_file_a')]), (seedSubflow, renameMasks, [('afni3Dcalc_seeds.out_file', 'in_file'), ('selectLabel.out', 'label')]), (seedSubflow, renameMasks2, [('selectLabel.out', 'label')]), (seedSubflow, renameZscore, [('selectLabel.out', 'label')]), (seedSubflow, renameZscore2, [('selectLabel.out', 'label')]), (seedSubflow, seed_wf, [('afni3Dcalc_seeds.out_file', 'warpSeedtoFMRI.input_image')]) ]) imageDir = makeSupportDir(args['name'], "images") if args['plot']: registration.write_graph(dotfilename=os.path.join( imageDir, 'register.dot'), graph2use='orig', format='png', simple_form=False) if preprocessOn: preprocessing.write_graph(dotfilename=os.path.join( imageDir, 'preprocess.dot'), graph2use='orig', format='png', simple_form=False) nuisance.write_graph(dotfilename=os.path.join( imageDir, 'nuisance.dot'), graph2use='orig', format='png', simple_form=False) seedSubflow.write_graph(dotfilename=os.path.join(imageDir, 'seed.dot'), graph2use='orig', format='png', simple_form=False) master.write_graph(dotfilename=os.path.join(imageDir, 'master.dot'), graph2use="orig", format='png', simple_form=False) elif args['debug']: try: master.run(updatehash=True) # Run restingState on the all threads # Setup environment for CPU load balancing of ITK based programs. # -------- # import multiprocessing # total_CPUS = 10 # multiprocessing.cpu_count() # master.run(plugin='MultiProc', plugin_args={'n_proc': total_CPUS}) #, updatehash=True) # -------- # Run restingState on the local cluster # master.run(plugin='SGE', plugin_args={'template': os.path.join(os.getcwd(), 'ENV/bin/activate'), # 'qsub_args': '-S /bin/bash -cwd'}) #, updatehash=True) except: pass master.name = "master" # HACK: Bug in Graphviz for nodes beginning with numbers master.write_graph(dotfilename=os.path.join(imageDir, 'debug_hier.dot'), graph2use="colored", format='png') master.write_graph(dotfilename=os.path.join(imageDir, 'debug_orig.dot'), graph2use="flat", format='png') else: import multiprocessing total_CPUS = multiprocessing.cpu_count() master.run(plugin='MultiProc', plugin_args={'n_proc': total_CPUS}) #, updatehash=True) return 0